Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Forensic Sci ; 66(2): 557-570, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33104255

RESUMO

The digital examination of scanned or measured 3D surface topography is referred to as Virtual Comparison Microscopy (VCM). Within the discipline of firearm and toolmark examination, VCM enables review and comparison of microscopic toolmarks on fired ammunition components. In the coming years, this technique may supplement and potentially replace the light comparison microscope as the primary instrument used for firearm and toolmark examination. This paper describes a VCM error rate and validation study involving 107 participants. The study included 40 test sets of fired cartridge cases from firearms with a variety of makes, models, and calibers. Participants used commercially available VCM software which allowed digital data distribution, specimen visualization, and submission of conclusions. The software also allowed participants to annotate areas of similarity and dissimilarity to support their conclusions. The primary cohort of 76 qualified United States and Canadian examiners that completed the study had an overall false-positive error rate of 3 errors from 693 comparisons (0.43%) and a false-negative error rate of 0 errors from 491 comparisons (0.0%). This accuracy is supplemented by the participant's provided surface annotations which provide insight into the cause of errors and the overall consistency across the independent examinations conducted in the study. The ability to obtain highly accurate conclusions on test fires from a wide range of firearms supports the hypothesis that VCM is a useful tool within the crime laboratory.

2.
Front Plant Sci ; 8: 373, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28367159

RESUMO

Recent studies have demonstrated that grapevine (Vitis spp.) leaf shape can be quantified using digital approaches which indicate phylogenetic signal in leaf shape, discernible patterns of developmental context within single leaves, and signatures of local environmental conditions. Here, we extend this work by quantifying intra-individual, intraspecific, and interspecific variation in leaf morphology in accessions of North American Vitis riparia and V. rupestris in a common environment. For each species at least four clonal replicates of multiple genotypes were grown in the Missouri Botanical Garden Kemper Center for Home Gardening. All leaves from a single shoot were harvested and scanned leaf images were used to conduct generalized Procrustes analysis, linear discriminant analysis, and elliptical Fourier analysis. Leaf shapes displayed genotype-specific signatures and species distinctions consistent with taxonomic classifications. Leaf shape variation within genotypes and among clones was the result of pest and pathogen-induced leaf damage that alters leaf morphology. Significant trends in leaf damage caused by disease and infestation were non-random with respect to leaf position on the shoot. Digital morphometrics is a powerful tool for assessing leaf shape variation among species, genotypes, and clones under common conditions and suggests biotic factors such as pests and pathogens as important drivers influencing leaf shape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA