Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 326: 199053, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36709793

RESUMO

Coronavirus disease 2019 (COVID-19) is an acute viral disease with millions of cases worldwide. Although the number of daily new cases and deaths has been dropping, there is still a need for therapeutic alternatives to deal with severe cases. A promising strategy to prospect new therapeutic candidates is to investigate the regulatory mechanisms involved in COVID-19 progression using integrated transcriptomics approaches. In this work, we aimed to identify COVID-19 Master Regulators (MRs) using a series of publicly available gene expression datasets of lung tissue from patients which developed the severe form of the disease. We were able to identify a set of six potential COVID-19 MRs related to its severe form, namely TAL1, TEAD4, EPAS1, ATOH8, ERG, and ARNTL2. In addition, using the Connectivity Map drug repositioning approach, we identified 52 different drugs which could be used to revert the disease signature, thus being candidates for the design of novel clinical treatments. Furthermore, we compared the identified signature and drugs with the ones obtained from the analysis of nasopharyngeal swab samples from infected patients and preclinical cell models. This comparison showed significant similarities between them, although also revealing some limitations on the overlap between clinical and preclinical data in COVID-19, highlighting the need for careful selection of the best model for each disease stage.


Assuntos
COVID-19 , Humanos , Reposicionamento de Medicamentos/métodos , Perfilação da Expressão Gênica/métodos , Pulmão , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética
2.
Crit Rev Oncol Hematol ; 153: 102995, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32569852

RESUMO

Several evidences indicate that melanoma, one of the deadliest types of cancer, presents the ability to transiently shift its phenotype under treatment or microenvironmental pressure to an invasive and treatment-resistant phenotype, which is characterized by cells with slow division cycle (also called slow-cycling cells) and high-OXPHOS metabolism. Many cellular marks have been proposed to track this phenotype, such as the expression levels of the master regulator of melanocyte differentiation (MITF) and the epigenetic factor JARID1B. It seems that the slow-cycling phenotype does not necessarily present a single gene expression signature. However, many lines of evidence lead to a common metabolic rewiring process in resistant cells that activates mitochondrial metabolism and changes the mitochondrial network morphology. Here, we propose that mitochondria-targeted drugs could increase not only the efficiency of target therapy, bypassing the dynamics between fast-cycling and slow-cycling, but also the sensitivity to immunotherapy by modulation of the melanoma microenvironment.


Assuntos
Melanoma/tratamento farmacológico , Ciclo Celular , Linhagem Celular Tumoral , Humanos , Imunoterapia , Mitocôndrias/genética , Fenótipo , Microambiente Tumoral
3.
Biol Cell ; 106(6): 167-81, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24678717

RESUMO

The heart is the first organ in the embryo to form. Its structural and functional complexity is the result of a thorough developmental program, where sphingolipids play an important role in cardiogenesis, heart maturation, angiogenesis, the regulation of vascular tone and vessel permeability. Sphingolipids are necessary for signal transduction and membrane microdomain formation. In addition, recent evidence suggests that sphingolipid metabolism is directly interconnected to the modulation of oxidative stress. However, cardiovascular development is highly sensitive to excessive reactive species production, and disturbances in sphingolipid metabolism can lead to abnormal development and cardiac disease. Therefore, in this review, we address the molecular link between sphingolipids and oxidative stress, connecting these pathways to cardiovascular development and cardiovascular disease.


Assuntos
Sistema Cardiovascular/embriologia , Espécies Reativas de Oxigênio/metabolismo , Esfingolipídeos/fisiologia , Animais , Humanos , Camundongos , Estresse Oxidativo/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...