Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(15): 44952-44962, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36697986

RESUMO

Bis(2-ethylhexyl) phthalate (DEHP) is a plasticizer that has been massively used since the second part of the twentieth century by the plastic industry to provide softness properties to PVC. This chemical is considered as toxic to reproduction and endocrine disrupting, and a wide range of uses are now forbidden by the EU. Despite these regulations, DEHP is still found to be a widespread contaminant in watersheds in the EU. In this study, we calculate retrospective and prospective scenarios of past and future emissions of DEHP in the environment (water, soil, air) in the EU 28, taking into account the entire lifecycle of the substance, from its production and its inclusion in polymer (mainly PVC) and non-polymer products (adhesive and sealant, ceramic and printing ink) to the recycling and end of life of these products. We develop a stock and flow model based on dynamically estimating the stocks of DEHP present in products on the market. Our results show that the introduction of recent regulations to limit the use of DEHP (that bring a 70% reduction of DEHP contained in products placed on the market in 2020 and 75% in 2040) will not reduce significantly future emissions. This persistence of emissions is explained by the high stocks built in the economy and the long-term presence of soft PVC waste in landfills. Our results suggest that DEHP will remain a cause of environmental contamination many decades after uses have declined and even ceased, and it appears to be too late for market regulation at the market stage to offset the effect of past stock buildup and landfilling. It is likely that several chemicals that are not considered as persistent and therefore not the focus of international regulations could exhibit the same characteristics. Regulations should avoid possible use patterns that make hazardous chemicals persistent in products, because they have the potential to create long-term and almost irreversible environmental pollution and impacts.


Assuntos
Dietilexilftalato , Dietilexilftalato/toxicidade , Polímeros , Estudos Prospectivos , Estudos Retrospectivos , Plastificantes , Poluição Ambiental , Europa (Continente)
2.
NanoImpact ; 23: 100335, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559836

RESUMO

Moving towards safe and sustainable innovations is an international policy ambition. In the on-hand manuscript, a concept combining safe by design and sustainability was implemented through the integration of human and environmental risk assessment, life cycle assessment as well as an assessment of the economic viability. The result is a nested and iterative process in form of a decision tree that integrates these three elements in order to achieve sustainable, safe and competitive materials, products or services. This approach, embedded into the stage-gate-model for safe by design, allows to reduce the uncertainty related to the assessment of risks and impacts by improving the quality of the data collected along each stage. In the second part of the manuscript, the application is shown for a case study dealing with the application of nanoparticles for Li-Ion batteries. One of the general conclusions out of this case study is that data gaps are a key aspect in view of the reliability of the results.


Assuntos
Nanoestruturas , Animais , Humanos , Estágios do Ciclo de Vida , Reprodutibilidade dos Testes , Medição de Risco/métodos , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...