Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37174030

RESUMO

Mitochondria are regulators of key cellular processes, including energy production and redox homeostasis. Mitochondrial dysfunction is associated with various human diseases, including cancer. Importantly, both structural and functional changes can alter mitochondrial function. Morphologic and quantifiable changes in mitochondria can affect their function and contribute to disease. Structural mitochondrial changes include alterations in cristae morphology, mitochondrial DNA integrity and quantity, and dynamics, such as fission and fusion. Functional parameters related to mitochondrial biology include the production of reactive oxygen species, bioenergetic capacity, calcium retention, and membrane potential. Although these parameters can occur independently of one another, changes in mitochondrial structure and function are often interrelated. Thus, evaluating changes in both mitochondrial structure and function is crucial to understanding the molecular events involved in disease onset and progression. This review focuses on the relationship between alterations in mitochondrial structure and function and cancer, with a particular emphasis on gynecologic malignancies. Selecting methods with tractable parameters may be critical to identifying and targeting mitochondria-related therapeutic options. Methods to measure changes in mitochondrial structure and function, with the associated benefits and limitations, are summarized.

2.
Ecotoxicol Environ Saf ; 248: 114314, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436258

RESUMO

Per- and polyfluoroalkyl substances (PFAS) comprise a diverse class of chemicals used in industrial processes, consumer products, and fire-fighting foams which have become environmental pollutants of concern due to their persistence, ubiquity, and associations with adverse human health outcomes, including in pregnant persons and their offspring. Multiple PFAS are associated with adverse liver outcomes in adult humans and toxicological models, but effects on the developing liver are not fully described. Here we performed transcriptomic analyses in the mouse to investigate the molecular mechanisms of hepatic toxicity in the dam and its fetus after exposure to two different PFAS, perfluorooctanoic acid (PFOA) and its replacement, hexafluoropropylene oxide-dimer acid (HFPO-DA, known as GenX). Pregnant CD-1 mice were exposed via oral gavage from embryonic day (E) 1.5-17.5 to PFOA (0, 1, or 5 mg/kg-d) or GenX (0, 2, or 10 mg/kg-d). Maternal and fetal liver RNA was isolated (N = 5 per dose/group) and the transcriptome analyzed by Affymetrix Array. Differentially expressed genes (DEG) and differentially enriched pathways (DEP) were obtained. DEG patterns were similar in maternal liver for 5 mg/kg PFOA, 2 mg/kg GenX, and 10 mg/kg GenX (R2: 0.46-0.66). DEG patterns were similar across all 4 dose groups in fetal liver (R2: 0.59-0.81). There were more DEGs in fetal liver compared to maternal liver at the low doses for both PFOA (fetal = 69, maternal = 8) and GenX (fetal = 154, maternal = 93). Upregulated DEPs identified across all groups included Fatty Acid Metabolism, Peroxisome, Oxidative Phosphorylation, Adipogenesis, and Bile Acid Metabolism. Transcriptome-phenotype correlation analyses demonstrated > 1000 maternal liver DEGs were significantly correlated with maternal relative liver weight (R2 >0.92). These findings show shared biological pathways of liver toxicity for PFOA and GenX in maternal and fetal livers in CD-1 mice. The limited overlap in specific DEGs between the dam and fetus suggests the developing liver responds differently than the adult liver to these chemical stressors. This work helps define mechanisms of hepatic toxicity of two structurally unique PFAS and may help predict latent consequences of developmental exposure.


Assuntos
Fluorocarbonos , Adulto , Humanos , Feminino , Gravidez , Camundongos , Animais , Fluorocarbonos/toxicidade , Óxidos , Caprilatos/toxicidade , Feto , Polímeros
3.
Toxicology ; 461: 152900, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34411659

RESUMO

The 3T3-L1 murine pre-adipocyte line is an established cell culture model for screening Metabolism Disrupting Chemicals (MDCs). Despite a need to accurately identify MDCs for further evaluation, relatively little research has been performed to comprehensively evaluate reproducibility across laboratories, assess factors that might contribute to varying degrees of differentiation between laboratories (media additives, plastics, cell source, etc.), or to standardize protocols. As such, the goals of this study were to assess interlaboratory variability of efficacy and potency outcomes for triglyceride accumulation and pre-adipocyte proliferation using the mouse 3T3-L1 pre-adipocyte cell assay to test chemicals. Ten laboratories from five different countries participated. Each laboratory evaluated one reference chemical (rosiglitazone) and three blinded test chemicals (tributyltin chloride, pyraclostrobin, and bisphenol A) using: 1) their Laboratory-specific 3T3-L1 Cells (LC) and their Laboratory-specific differentiation Protocol (LP), 2) Shared 3T3-L1 Cells (SC) with LP, 3) LC with a Shared differentiation Protocol (SP), and 4) SC with SP. Blinded test chemical responses were analyzed by the coordinating laboratory. The magnitude and range of bioactivities reported varied considerably across laboratories and test conditions, though the presence or absence of activity for each tested chemical was more consistent. Triglyceride accumulation activity determinations for rosiglitazone ranged from 90 to 100% across test conditions, but 30-70 % for pre-adipocyte proliferation; this was 40-80 % for triglyceride accumulation induced by pyraclostrobin, 80-100 % for tributyltin, and 80-100 % for bisphenol A. Consistency was much lower for pre-adipocyte proliferation, with 30-70 % active determinations for pyraclostrobin, 30-50 % for tributyltin, and 20-40 % for bisphenol A. Greater consistency was observed for the SC/SP assessment. As such, working to develop a standardized adipogenic differentiation protocol represents the best strategy for improving consistency of adipogenic responses using the 3T3-L1 model to reproducibly identify MDCs and increase confidence in reported outcomes.


Assuntos
Adipogenia/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Estrobilurinas/toxicidade , Compostos de Trialquitina/toxicidade , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Camundongos , Reprodutibilidade dos Testes , Rosiglitazona/farmacologia , Triglicerídeos/metabolismo
4.
Emerg Contam ; 7: 219-235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35097227

RESUMO

BACKGROUND: Perfluorooctanoic acid (PFOA) is an environmental contaminant associated with adverse metabolic outcomes in developmentally exposed human populations and mouse models. Hexafluoropropylene oxide-dimer acid (HFPO-DA, commonly called GenX) has replaced PFOA in many industrial applications in the U.S. and Europe and has been measured in global water systems from <1 to 9350 ng/L HFPO-DA. Health effects data for GenX are lacking. OBJECTIVE: Determine the effects of gestational exposure to GenX on offspring weight gain trajectory, adult metabolic health, liver pathology and key adipose gene pathways in male and female CD-1 mice. METHODS: Daily oral doses of GenX (0.2, 1.0, 2.0 mg/kg), PFOA (0.1, 1.0 mg/kg), or vehicle control were administered to pregnant mice (gestation days 1.5-17.5). Offspring were fed a high- or low-fat diet (HFD or LFD) at weaning until necropsy at 6 or 18 weeks, and metabolic endpoints were measured over time. PFOA and GenX serum and urine concentrations, weight gain, serum lipid parameters, body mass composition, glucose tolerance, white adipose tissue gene expression, and liver histopathology were evaluated. RESULTS: Prenatal exposure to GenX led to its accumulation in the serum and urine of 5-day old pups (P = 0.007, P < 0.001), which was undetectable by weaning. By 18 weeks of age, male mice fed LFD in the 2.0 mg/kg GenX group displayed increased weight gain (P < 0.05), fat mass (P = 0.016), hepatocellular microvesicular fatty change (P = 0.015), and insulin sensitivity (P = 0.014) in comparison to control males fed LFD. Female mice fed HFD had a significant increase in hepatocyte single cell necrosis in 1.0 mg/kg GenX group (P = 0.022) and 1.0 mg/kg PFOA group (P = 0.003) compared to control HFD females. Both sexes were affected by gestational GenX exposure; however, the observed phenotype varied between sex with males displaying more characteristics of metabolic disease and females exhibiting liver damage in response to the gestational exposure. CONCLUSIONS: Prenatal exposure to 1 mg/kg GenX and 1 mg/kg PFOA induces adverse metabolic outcomes in adult mice that are diet- and sex-dependent. GenX also accumulated in pup serum, suggesting that placental and potentially lactational transfer are important exposure routes for GenX.

5.
Toxicol Sci ; 166(2): 332-344, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496566

RESUMO

Tetrabromobisphenol A (TBBPA) is the most common flame retardant used in electrical housings, circuit boards, and automobiles. High-throughput screening and binding assays have identified TBBPA as an agonist for human peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipogenesis. TBBPA has been suggested to be an obesogen based on in vitro cellular assays and zebrafish data. We hypothesized that exposing preadipocytes to TBBPA could influence adipogenesis via genes other than those in the PPARγ pathway due to its structural similarity to bisphenol A, which demonstrates varied endocrine disrupting activities. Mouse-derived 3T3-L1 preadipocytes were induced to differentiate and continually treated with TBBPA for 8 days. High-content imaging of adipocytes displayed increased adipocyte number and lipid accumulation when treated with TBBPA. TBBPA exhibited weak induction of mPPARγ, with an AC50 of 397 µM. Quantitative PCR revealed that TBBPA exposure increased early expression of genes involved in glucocorticoid receptor (GR) signaling and PPARγ transcriptional activation, as well as upregulating downstream genes needed for adipocyte maintenance and nontraditional ER signaling, such as Gpr30. Additionally, Pref1 and Thy1, inhibitors of differentiation, were downregulated by some concentrations of TBBPA. Furthermore, proliferating preadipocytes treated with TBBPA, only prior to differentiation, exhibited increased adipocyte number and lipid accumulation after 8 days in normal culture conditions. In conclusion, TBBPA influenced gene expression changes in GR, nontraditional ER, and known adipogenic regulatory genes, prior to PPARγ expression; effects suggesting early programming of adipogenic pathways.


Assuntos
Adipogenia/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , PPAR gama/agonistas , Bifenil Polibromatos/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos
6.
Toxicol Pathol ; 44(7): 1021-33, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27613105

RESUMO

The potential of chemicals to alter susceptibility to mammary tumor formation is often assessed using a carcinogen-induced study design in various rat strains. The rate of mammary gland (MG) development must be considered so that the timing of carcinogen administration is impactful. In this study, in situ MG development was assessed in females of the Harlan Sprague-Dawley (Hsd:SD), Charles River Sprague-Dawley (Crl:SD), and Charles River Long-Evans (Crl:LE) rat strains at postnatal days 25, 33, and 45. Development was evaluated by physical assessment of growth parameters, developmental scoring, and quantitative morphometric analysis. Although body weight (BW) was consistently lower and day of vaginal opening (VO) occurred latest in female Hsd:SD rats, they exhibited accelerated pre- and peripubertal MG development compared to other strains. Glands of Crl:SD and Crl:LE rats exhibited significantly more terminal end buds (TEBs) and TEB/mm than Hsd:SD rats around the time of VO. These data suggest a considerable difference in the rate of MG development across commonly used strains, which is independent of BW and timing of VO. In mammary tumor induction studies employing these strains, administration of the carcinogen should be timed appropriately, based on strain, to specifically target the peak of TEB occurrence.


Assuntos
Glândulas Mamárias Animais/crescimento & desenvolvimento , Testes de Toxicidade/métodos , Animais , Carcinógenos/administração & dosagem , Carcinógenos/toxicidade , Feminino , Neoplasias Mamárias Experimentais/induzido quimicamente , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley
7.
Toxicol Pathol ; 44(7): 1034-58, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27613106

RESUMO

There are currently no reports describing mammary gland development in the Harlan Sprague-Dawley (HSD) rat, the current strain of choice for National Toxicology Program (NTP) testing. Our goals were to empower the NTP, contract labs, and other researchers in understanding and interpreting chemical effects in this rat strain. To delineate similarities/differences between the female and male mammary gland, data were compiled starting on embryonic day 15.5 through postnatal day 70. Mammary gland whole mounts, histology sections, and immunohistochemically stained tissues for estrogen, progesterone, and androgen receptors were evaluated in both sexes; qualitative and quantitative differences are highlighted using a comprehensive visual timeline. Research on endocrine disrupting chemicals in animal models has highlighted chemically induced mammary gland anomalies that may potentially impact human health. In order to investigate these effects within the HSD strain, 2,3,7,8-tetrachlorodibenzo-p-dioxin, diethylstilbestrol, or vehicle control was gavage dosed on gestation day 15 and 18 to demonstrate delayed, accelerated, and control mammary gland growth in offspring, respectively. We provide illustrations of normal and chemically altered mammary gland development in HSD male and female rats to help inform researchers unfamiliar with the tissue and may facilitate enhanced evaluation of both male and female mammary glands in juvenile toxicity studies.


Assuntos
Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/embriologia , Envelhecimento , Animais , Dietilestilbestrol/toxicidade , Feminino , Masculino , Dibenzodioxinas Policloradas/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade
8.
Dev Biol ; 397(1): 140-9, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25446031

RESUMO

In the testis, a subset of spermatogonia retains stem cell potential, while others differentiate to eventually become spermatozoa. This delicate balance must be maintained, as defects can result in testicular cancer or infertility. Currently, little is known about the gene products and signaling pathways directing these critical cell fate decisions. Retinoic acid (RA) is a requisite driver of spermatogonial differentiation and entry into meiosis, yet the mechanisms activated downstream are undefined. Here, we determined a requirement for RA in the expression of KIT, a receptor tyrosine kinase essential for spermatogonial differentiation. We found that RA signaling utilized the PI3K/AKT/mTOR signaling pathway to induce the efficient translation of mRNAs for Kit, which are present but not translated in undifferentiated spermatogonia. Our findings provide an important molecular link between a morphogen (RA) and the expression of KIT protein, which together direct the differentiation of spermatogonia throughout the male reproductive lifespan.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Espermatogênese , Tretinoína/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Espermatogônias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Testículo/metabolismo
9.
Reproduction ; 148(4): 333-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24989903

RESUMO

Sertoli cells undergo terminal differentiation at puberty to support all phases of germ cell development, which occurs in the mouse beginning in the second week of life. By ∼18 days postpartum (dpp), nearly all Sertoli cells have ceased proliferation. This terminal differentiation is accompanied by the development of unique and regionally concentrated filamentous actin (F-actin) structures at the basal and apical aspects of the seminiferous epithelium, and this reorganization is likely to involve the action of actin-binding proteins. Palladin (PALLD) is a widely expressed F-actin-binding and bundling protein recently shown to regulate these structures, yet it is predominantly nuclear in Sertoli cells at puberty. We found that PALLD localized within nuclei of primary Sertoli cells grown in serum-free media but relocalized to the cytoplasm upon serum stimulation. We utilized this system with in vivo relevance to Sertoli cell development to investigate mechanisms regulating nuclear localization of this F-actin-binding protein. Our results indicate that PALLD can be shuttled from the nucleus to the cytoplasm, and that this relocalization occurred following depolymerization of the F-actin cytoskeleton in response to cAMP signaling. Nuclear localization was reduced in Hpg-mutant testes, suggesting the involvement of gonadotropin signaling. We found that PALLD nuclear localization was unaffected in testis tissues from LH receptor and androgen receptor-mutant mice. However, PALLD nuclear localization was reduced in the testes of FSH receptor-mutant mice, suggesting that FSH signaling during Sertoli cell maturation regulates this subcellular localization.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fosfoproteínas/metabolismo , Células de Sertoli/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Hormônio Foliculoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Carioferinas/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos Knockout , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína Exportina 1
10.
Biol Reprod ; 89(3): 61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23926285

RESUMO

The basic tenets of germ cell development are conserved among metazoans. Following lineage commitment in the embryo, germ cells proliferate, transition into meiosis, and then differentiate into gametes capable of fertilization. In lower organisms such as Drosophila and C. elegans, germline stem cells make the decision to proliferate or enter meiosis based in large part on the regulated expression of genes by translational control. This study undertakes a direct characterization of mRNAs that experience translational control and their involvement in similar decisions in the mammalian testis. We previously showed that translation of mRNA encoding the germ cell-specific gene Rhox13 was suppressed in the fetal and neonatal testis. By investigating changes in message utilization during neonatal testis development, we found that a large number of mRNAs encoding both housekeeping and germ cell-specific proteins experience enhanced translational efficiency, rather than increase in abundance, in the testis as quiescent gonocytes transition to mitotic spermatogonia. Our results indicate that translational control is a significant regulator of the germ cell proteome during neonatal testis development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Controladores do Desenvolvimento , Biossíntese de Proteínas/genética , RNA Mensageiro/metabolismo , Testículo/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Fatores de Iniciação em Eucariotos , Masculino , Camundongos , Fosfoproteínas/metabolismo , Polirribossomos/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Espermatogônias/fisiologia , Testículo/metabolismo
11.
PLoS One ; 8(2): e55257, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405127

RESUMO

The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2), is expressed mainly in brain and prostate. Expression of TMEFF2 is deregulated in prostate cancer, suggesting a role in this disease, but the molecular mechanism(s) involved in this effect are not clear. Although androgens promote tmeff2 transcription, androgen delivery to castrated animals carrying CWR22 xenografts increases TMEFF2 protein levels in the absence of mRNA changes, suggesting that TMEFF2 may also be post-transcriptionally regulated. Here we show that translation of TMEFF2 is regulated by androgens. Addition of physiological concentrations of dihydrotestosterone (DHT) to prostate cancer cell lines increases translation of endogenous TMEFF2 or transfected TMEFF2-Luciferase fusions, and this effect requires the presence of upstream open reading frames (uORFs) in the 5'-untranslated region (5'-UTR) of TMEFF2. Using chemical and siRNA inhibition of the androgen receptor (AR), we show that the androgen effect on TMEFF2 translation is mediated by the AR. Importantly, DHT also promotes phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α) in an AR-dependent manner, paralleling the effect on TMEFF2 translation. Moreover, endoplasmic reticulum (ER) stress conditions, which promote eIF2α phosphorylation, also stimulate TMEFF2 translation. These results indicate that androgen signaling promotes eIF2α phosphorylation and subsequent translation of TMEFF2 via a mechanism that requires uORFs in the 5'-UTR of TMEFF2.


Assuntos
Regiões 5' não Traduzidas , Androgênios/metabolismo , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Fator de Iniciação 2 em Procariotos/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Androgênios/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/metabolismo , Fases de Leitura Aberta , Fosforilação , Fator de Iniciação 2 em Procariotos/metabolismo , Biossíntese de Proteínas , Subunidades Proteicas , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...