Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 202: 116275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564821

RESUMO

Mesopelagic water from the deep Eastern Mediterranean Sea (EMS) was collected under disrupted (REPRESS) or undisturbed (HP) pressure conditions and was acclimated to oil (OIL) or dispersed-oil (DISPOIL) under in situ pressure and temperature (10 MPa, 14 °C). Decompression resulted in oil-acclimatised microbial communities of lower diversity despite the restoration of in situ pressure conditions during the 1-week incubation. Further biodiversity loss was observed when oil-acclimatised communities were transferred to ONR7 medium to facilitate the isolation of oil-degrading bacteria. Microbial diversity loss impacted the degradation of recalcitrant oil compounds, especially PAHs, as low-abundance taxa, linked with PAH degradation, were outcompeted in the enrichment process. Thalassomonas, Pseudoalteromonas, Halomonas and Alcanivorax were enriched in ONR7 under all experimental conditions. No effect of dispersant application on the microbial community structure was identified. A. venustensis was isolated under all tested conditions suggesting a potential key role of this species in hydrocarbons removal in the deep EMS.


Assuntos
Biodiversidade , Microbiota , Petróleo , Mar Mediterrâneo , Microbiota/efeitos dos fármacos , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Bactérias , Meios de Cultura , Poluentes Químicos da Água , Água do Mar/microbiologia , Água do Mar/química , Pressão
2.
ACS Omega ; 8(14): 12955-12967, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065034

RESUMO

Magnetic particle hyperthermia (MPH) is a promising method for cancer treatment using magnetic nanoparticles (MNPs), which are subjected to an alternating magnetic field for local heating to the therapeutic range of 41-45 °C. In this window, the malignant regions (i.e., cancer cells) undergo a severe thermal shock while healthy tissues sustain this thermal regime with significantly milder side effects. Since the heating efficiency is directly associated with nanoparticle size, MNPs should acquire the appropriate size to maximize heating together with minimum toxicity. Herein, we report on facile synthetic controls to synthesize MNPs by an aqueous precipitation method, whereby tuning the pH values of the solution (9.0-13.5) results in a wide range of average MNP diameters from 16 to 76 nm. With respect to their size, the structural and magnetic properties of the MNPs are evaluated by adjusting the most important parameters, i.e. the MNP surrounding medium (water/agarose), the MNP concentration (1-4 mg mL-1), and the field amplitude (20-50 mT) and frequency (103, 375, 765 kHz). Consequently, the maximum heating efficiency is determined for each MNP size and set of parameters, outlining the optimum MNPs for MPH treatment. In this way, we can address the different heat generation mechanisms (Brownian, Néel, and hysteresis losses) to different sizes and separate Brownian and hysteresis losses for optimized sizes by studying the heat generation as a function of the medium viscosity. Finally, MNPs immobilized into agarose solution are studied under low-field MPH treatment to find the optimum conditions for clinical applications.

3.
Cell Rep ; 18(11): 2729-2741, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297675

RESUMO

Thiol peroxidases are conserved hydrogen peroxide scavenging and signaling molecules that contain redox-active cysteine residues. We show here that Gpx3, the major H2O2 sensor in yeast, is present in the mitochondrial intermembrane space (IMS), where it serves a compartment-specific role in oxidative metabolism. The IMS-localized Gpx3 contains an 18-amino acid N-terminally extended form encoded from a non-AUG codon. This acts as a mitochondrial targeting signal in a pathway independent of the hitherto known IMS-import pathways. Mitochondrial Gpx3 interacts with the Mia40 oxidoreductase in a redox-dependent manner and promotes efficient Mia40-dependent oxidative protein folding. We show that cells lacking Gpx3 have aberrant mitochondrial morphology, defective protein import capacity, and lower inner membrane potential, all of which can be rescued by expression of a mitochondrial-only form of Gpx3. Together, our data reveal a novel role for Gpx3 in mitochondrial redox regulation and protein homeostasis.


Assuntos
Glutationa Peroxidase/metabolismo , Membranas Mitocondriais/enzimologia , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Códon/genética , Deleção de Genes , Glutationa Peroxidase/química , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Biológicos , Oxirredução , Fenótipo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...