Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049958

RESUMO

The purpose of this work was to investigate, for the first time to our knowledge, the chemical composition and bioactivity of methanolic extracts (roots, stems, leaves, and flowers) from Cladanthus mixtus (L.) Chevall. that grows wild in northern Morocco (the Tangier-Tetouan-Al Hoceima region). The phenolic and flavonoid contents were determined by spectrophotometer methods, and the composition of derivatized methanolic extracts from C. mixtus using N-O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) was analyzed by gas chromatography-mass spectrometry (GC-MS). The antioxidant activity was carried out by applying the 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and DPPH (2,2-diphenyl-1-picrylhydrazyl) tests. The micro-dilution technique was chosen to investigate the antimicrobial activity of methanolic extracts against two bacterial strains and three fungal species. The results showed that the values of total phenolic and flavonoid contents were found to be higher in flower extracts (30.55 ± 0.85 mg of gallic acid equivalents (GAE)/g of dried weight (DW) and 26.00 ±1.34 mg of quercetin equivalents (QE)/g DW, respectively). Other groups of chemical compounds were revealed by GC-MS, such as carbohydrates (27.25-64.87%), fatty acids (1.58-9.08%), organic acids (11.81-18.82%), and amino acids (1.26-7.10%). Root and flower methanolic extracts showed the highest antioxidant activity using ABTS (39.49 mg of Trolox equivalents (TE)/g DW) and DPPH (36.23 mg TE/g DW), respectively. A positive correlation between antioxidant activity and polyphenol and flavonoid amounts was found. Antibacterial tests showed that the best activity was presented by the leaf extract against Staphylococcus aureus (minimum inhibitory concentration (MIC) = minimum bactericidal concentration (MBC) = 20 mg/mL) and Escherichia coli (MIC of 30 mg/mL and MBC of 35 mg/mL). S. aureus was more sensitive to the extracts compared to E. coli. All extracts showed antifungal activity against Trichophyton rubrum, with the best efficacy reported by the flower and leaf extracts (MIC = 1.25 mg/mL and minimum fungicidal concentration (MFC) = 2.5 mg/mL). In general, extracts of C. mixtus appeared less effective against Candida albicans and Aspergillus fumigatus.


Assuntos
Antioxidantes , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Staphylococcus aureus , Escherichia coli , Marrocos , Flavonoides/farmacologia , Flavonoides/análise , Fenóis/farmacologia , Fenóis/análise , Metanol/farmacologia
2.
Int J Food Microbiol ; 386: 110044, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502689

RESUMO

The aim of this study was to develop a mathematical model describing the survival of Escherichia coli O157:H7 in carrot juice treated with Thymbra capitata essential oil combined with mild heat treatment and stored at different temperatures. The viable count method was used to investigate the effect of the treatment on bacterial survival, and the response surface methodology was used to develop a statistical model fitting the data. The results showed that the variance of bacterial growth is explained by storage temperature (37 %) and heat treatment (35 %), these are followed by Thymbra capitata essential oil (18 %) and their interaction (9 %). Positive multiplicative interaction was obtained for any pair of the studied treatments and cooperative effect synergy was observed over a large domain of these factors. A mathematical model was successfully developed to describe Escherichia coli O157:H7 response to the selected factors, within the study limits, and to estimate the risk of juice contamination and shelf-life. Based on our results, the use of Thymbra capitata essential oil combined with heat treatment may control Escherichia coli O157:H7 growth in carrot juice stored at low temperature.


Assuntos
Daucus carota , Escherichia coli O157 , Óleos Voláteis , Temperatura , Daucus carota/microbiologia , Temperatura Alta , Óleos Voláteis/farmacologia , Bebidas/microbiologia , Microbiologia de Alimentos , Modelos Teóricos , Contagem de Colônia Microbiana
3.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-36015121

RESUMO

A flavone, chrysoeriol is synthetized in several plant species. It comes from several natural sources, especially medicinal plants. The identification and isolation of this compound has been carried out and verified by several research teams using different spectral methods. It seems that the concentration of this molecule is variable and fluctuating depending on the source, the part extracted, the region, and the methods of extraction and characterization. The aim of this paper is to highlight the in vitro and in vivo pharmacological properties of chrysoeriol and to provide insight into its pharmacokinetics. Anticancer, anti-inflammatory, antibacterial, antifungal, anti-osteoporosis, anti-insecticide, and neuroprotective actions have been shown in a number of studies on this chemical. Different mechanisms in theses pharmacological effects include subcellular, cellular, and molecular targets. In vivo pharmacokinetic analysis has proved the good stability of this molecule, showing its promising potential to prevent or treat diseases including cancer, diabetes, inflammation, osteoporosis, Parkinson's disease, and cardiovascular diseases.

4.
Biomed Res Int ; 2022: 3787818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655480

RESUMO

The family Lamiaceae contains several plants used in traditional medicine to fight against different diseases. Salvia verbenaca L. (S. verbenaca) is one of the Lamiaceae species distributed around the Mediterranean regions. This plant exhibits different bioactive properties, including antibacterial, anticancer, antioxidant, antileishmanial, antidiabetic, immunomodulatory, and wound healing. This review was conducted to revise previous studies on S. verbenaca addressing its botanical description, geographical distribution, and phytochemical, pharmacological, and toxicological properties. Moreover, the main pharmacological actions of S. verbenaca major compounds were well investigated. Literature reports have revealed that S. verbenaca possesses a pivotal role in medicinal applications. The findings of this work noted that S. verbenaca was found to be rich in chemical compound classes such as terpenoids, phenolics, fatty acids, sterols, and flavonoids. Numerous studies have found that S. verbenaca essential oils and extracts have a wide range of biological effects. These results support the potential pharmacological properties of S. verbenaca and its traditional uses. This analysis can constitute a scientific basis for further refined studies on its pure secondary metabolites. Therefore, the outcome of the present work may support the perspective of identifying new therapeutical applications with detailed pharmacological mechanisms of S. verbenaca to prevent the development of some diseases such as neurodegenerative disorders. However, toxicological investigations into S. verbenaca are needed to assess any potential toxicity before it can be further used in clinical studies.


Assuntos
Salvia , Antioxidantes/farmacologia , Medicina Tradicional , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química
5.
Life (Basel) ; 12(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35454969

RESUMO

Matricaria chamomilla L. is a famous medicinal plant distributed worldwide. It is widely used in traditional medicine to treat all kinds of diseases, including infections, neuropsychiatric, respiratory, gastrointestinal, and liver disorders. It is also used as a sedative, antispasmodic, antiseptic, and antiemetic. In this review, reports on M. chamomilla taxonomy, botanical and ecology description, ethnomedicinal uses, phytochemistry, biological and pharmacological properties, possible application in different industries, and encapsulation were critically gathered and summarized. Scientific search engines such as Web of Science, PubMed, Wiley Online, SpringerLink, ScienceDirect, Scopus, and Google Scholar were used to gather data on M. chamomilla. The phytochemistry composition of essential oils and extracts of M. chamomilla has been widely analyzed, showing that the plant contains over 120 constituents. Essential oils are generally composed of terpenoids, such as α-bisabolol and its oxides A and B, bisabolone oxide A, chamazulene, and ß-farnesene, among other compounds. On the other hand, M. chamomilla extracts were dominated by phenolic compounds, including phenolic acids, flavonoids, and coumarins. In addition, M. chamomilla demonstrated several biological properties such as antioxidant, antibacterial, antifungal, anti-parasitic, insecticidal, anti-diabetic, anti-cancer, and anti-inflammatory effects. These activities allow the application of M. chamomilla in the medicinal and veterinary field, food preservation, phytosanitary control, and as a surfactant and anti-corrosive agent. Finally, the encapsulation of M. chamomilla essential oils or extracts allows the enhancement of its biological activities and improvement of its applications. According to the findings, the pharmacological activities of M. chamomilla confirm its traditional uses. Indeed, M. chamomilla essential oils and extracts showed interesting antioxidant, antibacterial, antifungal, anticancer, antidiabetic, antiparasitic, anti-inflammatory, anti-depressant, anti-pyretic, anti-allergic, and analgesic activities. Moreover, the most important application of M. chamomilla was in the medicinal field on animals and humans.

6.
Food Res Int ; 154: 110979, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337553

RESUMO

Chenopodium album L., is a medicinal plant widely cultivated in Europe, North America, Iran, South Africa, Australia, South America, and Asia. This species is commonly used in folk medicine to treat many diseases such as cancer, viral infections, parasitic diseases, gastrointestinal disorders, as well as bacterial and fungal infections. The present review was carried out to highlight previous studies on C. album, including its botanical description, geographical distribution, genetic diversity, ecological variability, ethnomedicinal use, bioactive compounds, pharmacological properties, and toxicology. The data collected on C. album was generated using various scientific research databases such as SciFinder, PubMed, Google Scholar, SpringerLink, ScienceDirect, Web of Science, Scopus, and Wiley Online. In this review, the data presented focus on C. album to elucidate its ethnomedicinal use, pharmacological activities, and chemical composition in order to investigate the possible therapeutic pathways of the plant. Analysis of the findings showed that C. album has a capital power in various therapeutic uses such as antibacterial, antifungal, antiviral, antiparasitic, antipruritic, anticancer, antiulcer, antirheumatic, antidiabetic, antihyperlipidemic, antioxidant, and anti-inflammatory as well as other biological functions. Indeed, data on the chemical composition of the extracts and essential oils of this plant revealed its richness in secondary metabolites. The results of this paper prove that the pharmacological properties of C. album confirm its traditional importance in the international traditional pharmacopeia. This species notably exhibits various biological activities; antibacterial, antifungal, and antioxidant effects. However, toxicological investigations and pharmacokinetic validation are necessary in order to identify a possible toxicity of this plant for future clinical trials and to validate its bioavailability.


Assuntos
Anti-Infecciosos , Chenopodium album , Antibacterianos , Anti-Infecciosos/farmacologia , Variação Genética , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química
7.
Cancers (Basel) ; 15(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36612148

RESUMO

Many of the chemotherapeutic drugs for the treatment of cancer are molecules identified and isolated from plants or their synthetic derivatives. This work aimed to identify the bioactive compounds using LC-MS and GC-MS and to evaluate the anticancer activity of the methanolic extracts of roots, stems, leaves, and flowers from Cladanthus mixtus. The anticancer activity was evaluated in vitro against two cancer cell lines: human breast carcinoma (MCF-7) and human prostate carcinoma (PC-3), using the MTT assay and microscopic observation. A human normal lung fibroblast (MRC-5) was included to determine the extract's safety for non-tumoral cells. The chemical composition results by LC-MS analysis revealed the presence of 24 phenolic compounds. Furthermore, GC-MS analysis allowed the identification of many biomolecules belonging to terpenoids, esters, alcohols, alkanes, fatty acids, organic acids, benzenes, phenols, ketones, carbonyls, amines, sterols, and other groups. The findings suggest that the majority of C. mixtus extracts have antiproliferative activity against two cancer cell lines, MCF-7 and PC-3, and one non-tumoral cell line, MRC-5. The activity was dose-dependent, and the highest effect was obtained with leaf extract in the two cancer cell lines. Moreover, these extracts demonstrated an acceptable toxicological profile against normal cells. Overall, C. mixtus extracts revealed promising antitumor properties provided by their phytochemical composition.

8.
Biomolecules ; 11(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34944447

RESUMO

Carvone is a monoterpene ketone contained in the essential oils of several aromatic and medicinal plants of the Lamiaceae and Asteraceae families. From aromatic plants, this monoterpene is secreted at different concentrations depending on the species, the parts used, and the extraction methods. Currently, pharmacological investigations showed that carvone exhibits multiple pharmacological properties such as antibacterial, antifungal, antiparasitic, antineuraminidase, antioxidant, anti-inflammatory, and anticancer activities. These studies were carried out in vitro and in vivo and involved a great deal of knowledge on the mechanisms of action. Indeed, the antimicrobial effects are related to the action of carvone on the cell membrane and to ultrastructural changes, while the anti-inflammatory, antidiabetic, and anticancer effects involve the action on cellular and molecular targets such as inducing of apoptosis, autophagy, and senescence. With its multiple mechanisms, carvone can be considered as natural compounds to develop therapeutic drugs. However, other investigations regarding its precise mechanisms of action as well as its acute and chronic toxicities are needed to validate its applications. Therefore, this review discusses the principal studies investigating the pharmacological properties of carvone, and the mechanism of action underlying some of these properties. Moreover, further investigations of major pharmacodynamic and pharmacokinetic studies were also suggested.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Monoterpenos Cicloexânicos/farmacologia , Animais , Anti-Infecciosos/farmacocinética , Anti-Inflamatórios/farmacocinética , Antineoplásicos Fitogênicos/farmacocinética , Antioxidantes/farmacocinética , Autofagia , Membrana Celular/química , Sobrevivência Celular/efeitos dos fármacos , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/uso terapêutico , Etnofarmacologia , Humanos , Óleos Voláteis/química , Óleos de Plantas/química
9.
J Ethnopharmacol ; 275: 114124, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33865924

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Daphne gnidium L., (Lazaz or Metnan) is a perennial plant that grows around the Mediterranean basin, in Southern Europe, North Africa and the Middle East. It is used in different countries for hair care and to treat several diseases including skin cancer, diabetes, nervous breakdowns, sinusitis, poisoning, rheumatic disorders, odontalgia, muscular pain, and gastrointestinal infections. It is also used as anti-inflammatory, insecticide, and anti-parasitic remedy. AIM OF THE REVIEW: In this review, previous studies on D. gnidium including its botanical description, taxonomy, geographical distribution, medicinal use, phytochemistry, and pharmacological properties were critically highlighted and discussed for suggesting the exploration of this specie and its bioactive compounds in medical applications. MATERIALS AND METHODS: Data on D. gnidium were gathered from Scientific search engines including PubMed, ScienceDirect, SpringerLink, Web of Science, Scopus, Wiley Online, SciFinder, and Google Scholar. Reports on D. gnidium written in English published before September 2020 were summarized. RESULTS: In traditional medicine, D. gnidium is used to treat diabetes, gastrointestinal infections, skin cancer, nervous breakdowns, and sinusitis. The extracts and essential oil of D. gnidium exhibited several biological properties such as antibacterial, antifungal, antiviral, antigenotoxic, hemolytic, anti-inflammatory, immunomodulatory, neuroprotective, allelopathic, and insecticidal effects. Phytochemical investigations identified several chemical classes of secondary metabolites in D. gnidium essential oil and extracts including terpenoids, coumarins, flavonoids, fatty acids, and alkanes. CONCLUSIONS: The findings presented in this study showed a link between the traditional medicinal use and scientific biological results about D. gnidium. However, further investigations should be carried out to support medical and cosmetic applications of this species. Indeed, D. gnidium and its main compounds should be confirmed concerning their safety and their bioavailability. Moreover, pharmacodynamic studies should be conducted to support their efficacy in medical applications.


Assuntos
Daphne/química , Medicina Tradicional/métodos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Etnobotânica , Humanos , Região do Mediterrâneo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/química , Extratos Vegetais/toxicidade
10.
Int J Syst Evol Microbiol ; 69(1): 227-234, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30465640

RESUMO

During the taxonomic investigation of exopolymer-producing halophilic bacteria, a rod-shaped, motile, Gram-stain-negative, halophilic bacterium, designated strain N4T, was isolated from a saline soil located in northern Morocco. Optimal growth of the isolate was at 30-37 ºC and at pH 7.0-8.0, in the presence of 5-7 % (w/v) NaCl. Useful characteristics for the phenotypic differentiation of strain N4T from other Marinobacter species included α-chymotrypsin and α-glucosidase activities and the carbohydrate assimilation profile. The major fatty acids detected in strain N4T were C16:0 and C18:1ω9c and the predominant respiratory quinone was ubiquinone-9. Sequence analysis of the 16S rRNA gene indicated that strain N4T belonged to the genus Marinobacter and was closely related to the type strains of Marinobacter adhaerens (99.04 % similarity), Marinobacter salsuginis (98.97 %) and Marinobacter flavimaris (98.36 %). Phylogenetic analysis of the rpoD gene sequence also showed that the nearest neighbours of strain N4T were M. salsuginis (91.49 % similarity), M. adhaerens and M. flavimaris (90.63 %). Strain N4T showed 87.98 % average nucleotide identity with M. flavimaris and M. salsuginis, and 87.47 % with M. adhaerens. Regarding in-silico genome-to-genome distance, strain N4T showed DNA-DNA hybridization values of 33.30 % with M. adhaerens, 34.60 % with M. flavimaris and 34.70 % with M. salsuginis. The DNA G+C content of strain N4T was 57.3 mol%. Based on the results of phenotypic characterization, phylogenetic analysis and genome comparison, strain N4T represents a novel species of the genus Marinobacter, for which the name Marinobacter maroccanus sp. nov. is proposed. The type strain is N4T (=CECT 9525T=LMG 30466T).


Assuntos
Marinobacter/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Marinobacter/isolamento & purificação , Marrocos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...