Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 112835, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37478010

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in human cells by interacting with host factors following infection. To understand the virus and host interactome proximity, we introduce a super-resolution proximity labeling (SR-PL) method with a "plug-and-playable" PL enzyme, TurboID-GBP (GFP-binding nanobody protein), and we apply it for interactome mapping of SARS-CoV-2 ORF3a and membrane protein (M), which generates highly perturbed endoplasmic reticulum (ER) structures. Through SR-PL analysis of the biotinylated interactome, 224 and 272 peptides are robustly identified as ORF3a and M interactomes, respectively. Within the ORF3a interactome, RNF5 co-localizes with ORF3a and generates ubiquitin modifications of ORF3a that can be involved in protein degradation. We also observe that the SARS-CoV-2 infection rate is efficiently reduced by the overexpression of RNF5 in host cells. The interactome data obtained using the SR-PL method are presented at https://sarscov2.spatiomics.org. We hope that our method will contribute to revealing virus-host interactions of other viruses in an efficient manner.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Antivirais/metabolismo , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo
2.
Nat Commun ; 14(1): 2164, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061513

RESUMO

Effective humoral immune responses require well-orchestrated B and T follicular helper (Tfh) cell interactions. Whether these interactions are impaired and associated with COVID-19 disease severity is unclear. Here, longitudinal blood samples across COVID-19 disease severity are analysed. We find that during acute infection SARS-CoV-2-specific circulating Tfh (cTfh) cells expand with disease severity. SARS-CoV-2-specific cTfh cell frequencies correlate with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, from severe patients better induce plasmablast differentiation and antibody production compared to cTfh cells from mild patients. However, virus-specific cTfh cell development is delayed in patients that display or later develop severe disease compared to those with mild disease, which correlates with delayed induction of high-avidity neutralizing antibodies. Our study suggests that impaired generation of functional virus-specific cTfh cells delays high-quality antibody production at an early stage, potentially enabling progression to severe disease.


Assuntos
COVID-19 , Linfócitos T Auxiliares-Indutores , Humanos , Células T Auxiliares Foliculares , SARS-CoV-2 , Plasmócitos
3.
Pharmgenomics Pers Med ; 14: 737-744, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188520

RESUMO

PURPOSE: N-acetyltransferase-2 enzyme in the liver, encoded by NAT2 gene, plays a central role in metabolizing tuberculosis (TB) drug isoniazid (INH). Low compliance of patients toward six-month TB therapy and internal host factors, ie comorbid diseases, immune status, and genetic profiles, are factors leading to treatment failure and recurrence of pulmonary TB infection. This study aimed to explore the NAT2 acetylator status among newly diagnosed and recurrent pulmonary TB patients in eastern part of Indonesia. PATIENTS AND METHODS: Archived DNA of TB patients (n=124) and healthy controls (n=124) were sequenced, and NAT2 acetylator status was determined, then categorized as fast, intermediate, or slow acetylators. Pulmonary TB patients who had no previous TB treatment history were designated as newly diagnosed pulmonary TB, whereas patients with a history of TB treatment were designated as recurrent pulmonary TB. The demographic, clinical, and microbiological data between pulmonary TB groups were compared, and acetylator status was described among groups. RESULTS: Male was more significantly prevalent in the recurrent pulmonary TB group (p=0.025), and anemia was more prevalent in new pulmonary TB (p=0.003). The acetylator status in pulmonary TB patients compared to healthy controls were rapid (33.9% vs 48.1%), intermediate (57.8% vs 33.0%), and slow acetylators (8.3% vs 18.9%), respectively. Interestingly, the rapid and intermediate acetylator were significantly more prevalent in pulmonary TB patients than in healthy controls (p=0.023, OR=2.58 (1.12-5.97). Furthermore, no differences were found in acetylator status between new and recurrent pulmonary (p=0.776). CONCLUSION: Rapid and intermediate acetylators status predominated the pulmonary TB patients in Kupang, eastern part of Indonesia, postulating different genetic makeup in this area. As the pulmonary TB patients in Kupang exhibit more rapid acetylator phenotype, the acetylator status might be relevant to be checked before TB therapy for adjusting treatment dose to prevent drug resistances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...