Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 65(3): 475-480, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272705

RESUMO

Fructose metabolism has been implicated in various diseases, including metabolic disorders, neurodegenerative disorders, cardiac disorders, and cancer. However, the limited availability of a quantitative imaging radiotracer has hindered its exploration in pathology and diagnostic imaging. Methods: We adopted a molecular design strategy based on the catalytic mechanism of aldolase, a key enzyme in fructolysis. We successfully synthesized a radiodeoxyfluorinated fructose analog, [18F]4-fluoro-4-deoxyfructose ([18F]4-FDF), in high molar activity. Results: Through heavy isotope tracing by mass spectrometry, we demonstrated that C4-deoxyfluorination of fructose led to effective trapping as fluorodeoxysorbitol and fluorodeoxyfructose-1-phosphate in vitro, unlike C1- and C6-fluorinated analogs that resulted in fluorolactate accumulation. This observation was consistent in vivo, where [18F]6-fluoro-6-deoxyfructose displayed substantial bone uptake due to metabolic processing whereas [18F]4-FDF did not. Importantly, [18F]4-FDF exhibited low uptake in healthy brain and heart tissues, known for their high glycolytic activity and background levels of [18F]FDG uptake. [18F]4-FDF PET/CT allowed for sensitive mapping of neuro- and cardioinflammatory responses to systemic lipopolysaccharide administration. Conclusion: Our study highlights the significance of aldolase-guided C4 radiodeoxyfluorination of fructose in enabling effective radiotracer trapping, overcoming limitations of C1 and C6 radioanalogs toward a clinically viable tool for imaging fructolysis in highly glycolytic tissues.


Assuntos
Frutose-Bifosfato Aldolase , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Aldeído Liases , Glicólise , Frutose
2.
Carbohydr Res ; 507: 108377, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34303197

RESUMO

A concise, easily scalable synthesis of a rare ketohexose, d-tagatose, was developed, that is compatible with the preparation of d-[UL-13C6]tagatose. Epimerization of the widely available and inexpensive ketohexose d-fructose at the C-4 position via an oxidation/reduction (Dess-Martin periodinane/NaBH4) was a key step in the synthesis. Overall, fully protected natural d-tagatose (3.21 g) was prepared from d-fructose (9 g) on a 50 mmol scale in 23% overall yield, after five steps and two chromatographic purifications. d-[UL-13C6]Tagatose (92 mg) was prepared from d-[UL-13C6]fructose (465 mg, 2.5 mmol) in 16% overall yield after six steps and four chromatographic purifications.


Assuntos
Hexoses , Frutose , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...