Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(9): e2304044, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37957006

RESUMO

Amorphous oxide semiconductor transistors have been a mature technology in display panels for upward of a decade, and have recently been considered as promising back-end-of-line compatible channel materials for monolithic 3D applications. However, achieving high-mobility amorphous semiconductor materials with comparable performance to traditional crystalline semiconductors has been a long-standing problem. Recently it has been found that greatly reducing the thickness of indium oxide, enabled by an atomic layer deposition (ALD) process, can tune its material properties to achieve high mobility, high drive current, high on/off ratio, and enhancement-mode operation at the same time, beyond the capabilities of conventional oxide semiconductor materials. In this work, the history leading to the re-emergence of indium oxide, its fundamental material properties, growth techniques with a focus on ALD, state-of-the-art indium oxide device research, and the bias stability of the devices are reviewed.

2.
ACS Nano ; 16(12): 21536-21545, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36446079

RESUMO

High drive current is a critical performance parameter in semiconductor devices for high-speed, low-power logic applications or high-efficiency, high-power, high-speed radio frequency (RF) analogue applications. In this work, we demonstrate an In2O3 transistor grown by atomic layer deposition (ALD) at back-end-of-line (BEOL) compatible temperatures with a record high drain current in planar FET, exceeding 10 A/mm, the performance of which is 2-3 times better than all known transistors with semiconductor channels. A high transconductance reaches 4 S/mm, recorded among all transistors with a planar structure. Planar FETs working ballistically or quasi-ballistically are exploited as one of the simplest platforms to investigate the intrinsic transport properties. It is found experimentally and theoretically that a high carrier density and high electron velocity both contribute to this high on-state performance in ALD In2O3 transistors, which is made possible by the high-quality oxide/oxide interface, the metal-like charge-neutrality-level (CNL) alignment, and the high band velocities induced by the low density-of-state (DOS). Experimental Hall, I-V, and split C-V measurements at room temperature confirm a high carrier density of up to 6-7 × 1013 /cm2 and a high velocity of about 107 cm/s, well-supported by density functional theory (DFT) calculations. The simultaneous demonstration of such high carrier concentration and average band velocity is enabled by the exploitation of the ultrafast pulse scheme and heat dissipation engineering.

3.
Nano Lett ; 21(1): 500-506, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33372788

RESUMO

In this work, we demonstrate enhancement-mode field-effect transistors by an atomic-layer-deposited (ALD) amorphous In2O3 channel with thickness down to 0.7 nm. Thickness is found to be critical on the materials and electron transport of In2O3. Controllable thickness of In2O3 at atomic scale enables the design of sufficient 2D carrier density in the In2O3 channel integrated with the conventional dielectric. The threshold voltage and channel carrier density are found to be considerably tuned by channel thickness. Such a phenomenon is understood by the trap neutral level (TNL) model, where the Fermi-level tends to align deeply inside the conduction band of In2O3 and can be modulated to the bandgap in atomic layer thin In2O3 due to the quantum confinement effect, which is confirmed by density function theory (DFT) calculation. The demonstration of enhancement-mode amorphous In2O3 transistors suggests In2O3 is a competitive channel material for back-end-of-line (BEOL) compatible transistors and monolithic 3D integration applications.

4.
ACS Omega ; 4(24): 20756-20761, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31858062

RESUMO

Herein, we present a solar-blind ultraviolet photodetector realized using atomic layer-deposited p-type cuprous oxide (Cu2O) underneath a mechanically exfoliated n-type ß-gallium oxide (ß-Ga2O3) nanomembrane. The atomic layer deposition process of the Cu2O film applies bis(N,N'-di-secbutylacetamidinato)dicopper(I) [Cu(5Bu-Me-amd)]2 as a novel Cu precursor and water vapor as an oxidant. The exfoliated ß-Ga2O3 nanomembrane was transferred to the top of the Cu2O layer surface to realize a unique oxide pn heterojunction, which is not easy to realize by conventional oxide epitaxy techniques. The current-voltage (I-V) characteristics of the fabricated pn heterojunction diode show the typical rectifying behavior. The fabricated Cu2O/ß-Ga2O3 photodetector achieves sensitive detection of current at the picoampere scale in the reverse mode. This work provides a new approach to integrate all oxide heterojunctions using membrane transfer and bonding techniques, which goes beyond the limitation of conventional heteroepitaxy.

5.
Adv Mater ; 30(10)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29337377

RESUMO

Few-layer black phosphorus (BP) has emerged as one of the most promising candidates for post-silicon electronic materials due to its outstanding electrical and optical properties. However, lack of large-scale BP thin films is still a major roadblock to further applications. The most widely used methods for obtaining BP thin films are mechanical exfoliation and liquid exfoliation. Herein, a method of directly synthesizing continuous BP thin films with the capability of patterning arbitrary shapes by employing ultrafast laser writing with confinement is reported. The physical mechanism of confined laser metaphase transformation is understood by molecular dynamics simulation. Ultrafast laser ablation of BP layer under confinement can induce transient nonequilibrium high-temperature and high-pressure conditions for a few picoseconds. Under optimized laser intensity, this process induces a metaphase transformation to form a crystalline BP thin film on the substrate. Raman spectroscopy, atomic force microscopy, and transmission electron microscopy techniques are utilized to characterize the morphology of the resulting BP thin films. Field-effect transistors are fabricated on the BP films to study their electrical properties. This unique approach offers a general methodology to mass produce large-scale patterned BP films with a one-step manufacturing process that has the potential to be applied to other 2D materials.

6.
Sci Rep ; 7(1): 16857, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203831

RESUMO

In this work, we demonstrate for the first time an ultra-low contact resistance few-layered black phosphorus (BP) transistor with metallic PGex contacts formed by rapid thermal annealing (RTA). The on-state current of the transistor can be significantly improved and the ION/IOFF ratio increases by almost 2 order. The hole mobility is enhanced by 25 times to 227 cm2V-1s-1. The contact resistance extracted by the transfer length method is 0.365 kΩ∙µm, which is the lowest value in black phosphorus transistors without degradation of ION/IOFF ratio. In addition, the I-V curve of the transistor with PGex contact is linear compared to that with Ti contact at 80 K, indicating that a metallic ohmic contact is successfully formed. Finally, X-ray photoelectron spectroscopy is used to characterize the PGex compound. A signal of P-Ge bond is first observed, further verifying the doping of Ge into BP and the formation of the PGex alloy.

7.
ACS Nano ; 11(10): 10222-10229, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28949510

RESUMO

Selenium has attracted intensive attention as a promising material candidate for future optoelectronic applications. However, selenium has a strong tendency to grow into nanowire forms due to its anisotropic atomic structure, which has largely hindered the exploration of its potential applications. In this work, using a physical vapor deposition method, we have demonstrated the synthesis of large-size, high-quality 2D selenium nanosheets, the minimum thickness of which could be as thin as 5 nm. The Se nanosheet exhibits a strong in-plane anisotropic property, which is determined by angle-resolved Raman spectroscopy. Back-gating field-effect transistors based on a Se nanosheet exhibit p-type transport behaviors with on-state current density around 20 mA/mm at Vds = 3 V. Four-terminal field-effect devices are also fabricated to evaluate the intrinsic hole mobility of the selenium nanosheet, and the value is determined to be 0.26 cm2 V-1 s-1 at 300 K. The selenium nanosheet phototransistors show an excellent photoresponsivity of up to 263 A/W, with a rise time of 0.1 s and fall time of 0.12 s. These results suggest that crystal selenium as a 2D form of a 1D van der Waals solid opens up the possibility to explore device applications.

8.
ACS Omega ; 2(8): 4173-4179, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457714

RESUMO

Black phosphorus (BP) is a recently rediscovered layered two-dimensional (2D) semiconductor with a direct band gap (0.35-2 eV), high hole mobility (300-5000 cm2/Vs), and transport anisotropy. In this paper, we systematically investigated the effects of metal-semiconductor interface/contacts on the performance of BP Schottky barrier transistors. First, a "clean" metal-BP contact is formed with boron nitride (BN) passivation. It is found that the contact resistance of the clean metal-BP contact is seven times less than the previously reported values. As a result, high-performance top-gate BP transistors show a record high ON-state drain current (I on) of 940 µA/µm. Second, BN tunneling barriers are formed at the source/drain contacts to help understand the abnormally high OFF-state drain current (I off) in devices with clean metal-BP contacts. This high I off is attributed to the electron tunneling current from the drain to the channel. Finally, the I on/I off of BP field-effect transistors can be significantly improved by using an asymmetric contact structure. By inserting a thin BN tunneling barrier at the drain side, I off is reduced by a factor of ∼120 with a cost of 20% reduction in I on. This case study of contacts on BP reveals the importance of understanding the metal-semiconductor contacts for 2D Schottky barrier transistors in general.

9.
Nano Lett ; 16(12): 7364-7369, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960486

RESUMO

Transition metal pentatelluride ZrTe5 is a versatile material in condensed-matter physics and has been intensively studied since the 1980s. The most fascinating feature of ZrTe5 is that it is a 3D Dirac semimetal which has linear energy dispersion in all three dimensions in momentum space. Structure-wise, ZrTe5 is a layered material held together by weak interlayer van der Waals force. The combination of its unique band structure and 2D atomic structure provides a fertile ground for more potential exotic physical phenomena in ZrTe5 related to 3D Dirac semimentals. However, the physical properties of its few-layer form have yet to be thoroughly explored. Here we report strong optical and electrical in-plane anisotropy of mechanically exfoliated few-layer ZrTe5. Raman spectroscopy shows a significant intensity change with sample orientations, and the behavior of angle-resolved phonon modes at the Γ point is explained by theoretical calculations. DC conductance measurement indicates a 50% of difference along different in-plane directions. The diminishing of resistivity anomaly in few-layer samples indicates the evolution of band structure with a reduced thickness. A low-temperature Hall experiment sheds light on more intrinsic anisotropic electrical transport, with a hole mobility of 3000 and 1500 cm2/V·s along the a-axis and c-axis, respectively. Pronounced quantum oscillations in magnetoresistance are observed at low temperatures with the highest electron mobility up to 44 000 cm2/V·s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...