Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(2): 1129-1138, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879345

RESUMO

Immunotherapy directed at the PD-L1/PD-1 axis has produced treatment advances in various human cancers. Unfortunately, progress has not extended to glioblastoma (GBM), with phase III clinical trials assessing anti-PD-1 monotherapy failing to show efficacy in newly diagnosed and recurrent tumors. Myeloid-derived suppressor cells (MDSCs), a subset of immunosuppressive myeloid derived cells, are known to infiltrate the tumor microenvironment of GBM. Growing evidence suggests the CCL2-CCR2 axis is important for this process. This study evaluated the combination of PD-1 blockade and CCR2 inhibition in anti-PD-1-resistant gliomas. CCR2 deficiency unmasked an anti-PD-1 survival benefit in KR158 glioma-bearing mice. CD11b+/Ly6Chi/PD-L1+ MDSCs within established gliomas decreased with a concomitant increase in overall CCR2+ cells and MDSCs within bone marrow of CCR2-deficient mice. The CCR2 antagonist CCX872 increased median survival as a monotherapy in KR158 glioma-bearing animals and further increased median and overall survival when combined with anti-PD-1. Additionally, combination of CCX872 and anti-PD-1 prolonged median survival time in 005 GSC GBM-bearing mice. In both models, CCX872 decreased tumor associated MDSCs and increased these cells within the bone marrow. Examination of tumor-infiltrating lymphocytes revealed an elevated population, increased IFNγ expression, indicating enhanced cytolytic activity, as well as decreased expression of exhaustion markers in CD4+ and CD8+ T cells following combination treatment. These data establish that combining CCR2 and PD-1 blockade extends survival in clinically relevant murine glioma models and provides the basis on which to advance this combinatorial treatment toward early-phase human trials.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Glioma/tratamento farmacológico , Células Mieloides/metabolismo , Receptores CCR2/efeitos dos fármacos , Receptores CCR2/metabolismo , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CCL2 , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioma/patologia , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/metabolismo , Receptor de Morte Celular Programada 1 , Receptores CCR2/genética , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos
2.
J Immunol ; 203(12): 3157-3165, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31676674

RESUMO

C-C chemokine receptor 2 (CCR2) is a key driver of monocyte/macrophage trafficking to sites of inflammation and has long been considered a target for intervention in autoimmune disease. However, systemic administration of CCR2 antagonists is associated with marked increases in CCL2, a CCR2 ligand, in the blood. This heretofore unexplained phenomenon complicates interpretation of in vivo responses to CCR2 antagonism. We report that CCL2 elevation after pharmacological CCR2 blockade is due to interruption in a balance between CCL2 secretion by a variety of cells and its uptake by constitutive internalization and recycling of CCR2. We observed this phenomenon in response to structurally diverse CCR2 antagonists in wild-type mice, and also found substantially higher CCL2 plasma levels in mice lacking the CCR2 gene. Our findings suggest that CCL2 is cleared from blood in a CCR2-dependent but G protein (Gαi, Gαs or Gαq/11)-independent manner. This constitutive internalization is rapid: on a given monocyte, the entire cell surface CCR2 population is turned over in <30 minutes. We also found that constitutive receptor internalization/recycling and ligand uptake are not universal across monocyte-expressed chemokine receptors. For example, CXCR4 does not internalize constitutively. In summary, we describe a mechanism that explains the numerous preclinical and clinical reports of increased CCL2 plasma levels following in vivo administration of CCR2 antagonists. These findings suggest that constitutive CCL2 secretion by monocytes and other cell types is counteracted by constant uptake and internalization by CCR2-expressing cells. The effectiveness of CCR2 antagonists in disease settings may be dependent upon this critical equilibrium.


Assuntos
Quimiocina CCL2/biossíntese , Receptores CCR2/metabolismo , Animais , Biomarcadores , Linhagem Celular , Quimiocina CCL2/sangue , Quimiocina CCL2/genética , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Humanos , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Receptores CCR2/antagonistas & inibidores
3.
J Immunol ; 202(6): 1687-1692, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30718298

RESUMO

Several types of psoriasiform dermatitis are associated with increased IL-36 cytokine activity in the skin. A rare, but severe, psoriasis-like disorder, generalized pustular psoriasis (GPP), is linked to loss-of-function mutations in the gene encoding IL-36RA, an important negative regulator of IL-36 signaling. To understand the effects of IL-36 dysregulation in a mouse model, we studied skin inflammation induced by intradermal injections of preactivated IL-36α. We found the immune cells infiltrating IL-36α-injected mouse skin to be of dramatically different composition than those infiltrating imiquimod-treated skin. The IL-36α-induced leukocyte population comprised nearly equal numbers of CD4+ αß T cells, neutrophils, and inflammatory dendritic cells, whereas the imiquimod-induced population comprised γδ T cells and neutrophils. Ligands for chemokine receptors CCR6 and CXCR2 are increased in both GPP and IL-36α-treated skin, which led us to test an optimized small-molecule antagonist (CCX624) targeting CCR6 and CXCR2 in the IL-36α model. CCX624 significantly reduced the T cell, neutrophil, and inflammatory dendritic cell infiltrates and was more effective than saturating levels of an anti-IL-17RA mAb at reducing inflammatory symptoms. These findings put CCR6 and CXCR2 forward as novel targets for a mechanistically distinct therapeutic approach for inflammatory skin diseases involving dysregulated IL-36 signaling, such as GPP.


Assuntos
Anti-Inflamatórios/farmacologia , Interleucina-1/toxicidade , Psoríase/imunologia , Receptores CCR6/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Interleucina-1/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Pele/efeitos dos fármacos , Pele/imunologia
4.
PLoS One ; 13(3): e0192405, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29561839

RESUMO

Focal segmental glomerulosclerosis (FSGS) comprises a group of uncommon disorders that present with marked proteinuria, nephrotic syndrome, progressive renal failure and characteristic glomerular lesions on histopathology. The current standard of care for patients with FSGS include immunosuppressive drugs such as glucocorticoids followed by calcineurin inhibitors, if needed for intolerance or inadequate response to glucocorticoids. Renin-angiotensin-aldosterone (RAAS) blockers are also used to control proteinuria, an important signature of FSGS. Existing treatments, however, achieved only limited success. Despite best care, treatment failure is common and FSGS is causal in a significant proportion of end stage renal disease. Thus, an unmet need exists for novel disease modifying treatments for FSGS. We employed two widely-used murine models of FSGS to test the hypothesis that systemic inhibition of chemokine receptor CCR2 would have therapeutic benefit. Here we report that administration CCX872, a potent and selective small molecule antagonist of CCR2, achieved rapid and sustained attenuation of renal damage as determined by urine albumin excretion and improved histopathological outcome. Therapeutic benefit was present when CCX872 was used as a single therapy, and moreover, the combination of CCX872 and RAAS blockade was statistically more effective than RAAS blockade alone. In addition, the combination of CCR2 and RAAS blockade was equally as effective as endothelin receptor inhibition. We conclude that specific inhibition of CCR2 is effective in the Adriamycin-induced and 5/6 nephrectomy murine models of FSGS, and thus holds promise as a mechanistically distinct therapeutic addition to the treatment of human FSGS.


Assuntos
Albuminúria , Glomerulosclerose Segmentar e Focal , Glomérulos Renais , Receptores CCR2/antagonistas & inibidores , Sistema Renina-Angiotensina/efeitos dos fármacos , Albuminúria/tratamento farmacológico , Albuminúria/patologia , Albuminúria/urina , Animais , Linhagem Celular , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/urina , Humanos , Glomérulos Renais/lesões , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores CCR2/metabolismo
5.
Front Immunol ; 9: 3063, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671055

RESUMO

The chemokine CCL7 (MCP3) is known to promote the recruitment of many innate immune cell types including monocytes and neutrophils to sites of bacterial and viral infection and eosinophils and basophils to sites of allergic inflammation. CCL7 upregulation has been associated with many inflammatory settings including infection, cardiovascular disease, and the tumor microenvironment. CCL7's pleotropic effects are due in part to its ability to bind numerous chemokine receptors, namely CCR1, CCR2, CCR3, CCR5, and CCR10. CCL7-blockade or CCL7-deficiency is often marked by decreased inflammation and poor pathogen control. In the context of Leishmania major infection, CCL7 is specifically upregulated in the skin one-2 weeks after infection but its role in L. major control is unclear. To determine CCL7's impact on the response to L. major we infected WT and CCL7-/- C57BL/6 mice. L. major infection of CCL7-deficient mice led to an unexpected increase in inflammation in the infected skin 2 weeks post-infection. A broad increase in immune cell subsets was observed but was dominated by enhanced neutrophilic infiltration. Increased neutrophil recruitment was associated with an enhanced IL-17 gene profile in the infected skin. CCL7 was shown to directly antagonize neutrophil migration in vitro and CCL7 add-back in vivo specifically reduced neutrophil influx into the infected skin revealing an unexpected role for CCL7 in limiting neutrophil recruitment during L. major infection. Enhanced neutrophilic infiltration in CCL7-deficient mice changed the balance of L. major infected host cells with an increase in the ratio of infected neutrophils over monocytes/macrophages. To determine the consequence of CCL7 deficiency on L. major control we analyzed parasite load cutaneously at the site of infection and viscerally in the draining LN and spleen. The CCL7-/- mice supported robust cutaneous parasite control similar to their WT C57BL/6 counterparts. In contrast, CCL7-deficiency led to greater parasite dissemination and poor parasite control in the spleen. Our studies reveal a novel role for CCL7 in negatively regulating cutaneous inflammation, specifically neutrophils, early during L. major infection. We propose that CCL7-mediated dampening of the early immune response in the skin may limit the ability of the parasite to disseminate without compromising cutaneous control.


Assuntos
Quimiocina CCL7/imunologia , Quimiocina CCL7/metabolismo , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Análise de Variância , Animais , Movimento Celular , Quimiocina CCL7/genética , Quimiocina CXCL2/metabolismo , Expressão Gênica , Inflamação/genética , Inflamação/imunologia , Interleucina-17/genética , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/fisiologia , Estatísticas não Paramétricas
6.
J Immunol ; 199(9): 3129-3136, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972090

RESUMO

mAbs that neutralize IL-17 or its receptor have proven efficacious in treating moderate-to-severe psoriasis, confirming IL-17 as an important driver of this disease. In mice, a rare population of T cells, γδT17 cells, appears to be a dominant source of IL-17 in experimental psoriasis. These cells traffic between lymph nodes and the skin, and are identified by their coexpression of the TCR variable regions γ4 and δ4. These cells are homologous to the Vγ9Vδ2 T cell population identified in human psoriatic plaques. In this study we report that a potent and specific small molecule antagonist of the CCR6 chemokine receptor, CCX2553, was efficacious in reducing multiple aspects of psoriasis in two different murine models of the disease. Administration of CCX2553 ameliorated skin inflammation in both the IL-23-induced ear swelling model and the topical imiquimod model, and significantly reduced the number of γδT17 cells in inflamed skin. γδT17 cells were greatly reduced in imiquimod-treated skin of CCR6-/- mice, but adoptively transferred wild-type (CCR6+/+) γδT17 cells homed normally to the skin of imiquimod-treated CCR6-/- mice. Our data suggest that γδT17 cells are completely dependent on CCR6 for homing to psoriasiform skin. Thus, CCR6 may constitute a novel target for a mechanistically distinct therapeutic approach to treating psoriasis.


Assuntos
Movimento Celular/imunologia , Interleucina-17/imunologia , Psoríase/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores CCR6/imunologia , Pele/imunologia , Linfócitos T/imunologia , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Interleucina-17/genética , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Psoríase/genética , Psoríase/patologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores CCR6/genética , Pele/patologia , Linfócitos T/patologia
8.
J Immunol ; 195(9): 4306-18, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26401006

RESUMO

West Nile virus (WNV) is a re-emerging pathogen and the leading cause of epidemic encephalitis in the United States. Inflammatory monocytes are a critical component of the cellular infiltrate found in the CNS during WNV encephalitis, although the molecular cues involved in their migration are not fully understood. In mice, we previously showed that WNV infection induces a CCR2-dependent monocytosis that precedes monocyte migration into the CNS. Currently, the relative contribution of the CCR2 ligands, chemokines CCL2 and CCL7, in directing monocyte mobilization and leukocyte migration into the CNS is unclear. In this study, we demonstrate that, although both CCL2 and CCL7 are required for efficient monocytosis and monocyte accumulation in the CNS, only CCL7 deficiency resulted in increased viral burden in the brain and enhanced mortality. The enhanced susceptibility in the absence of CCL7 was associated with the delayed migration of neutrophils and CD8(+) T cells into the CNS compared with WT or Ccl2(-/-) mice. To determine whether CCL7 reconstitution could therapeutically alter the survival outcome of WNV infection, we administered exogenous CCL7 i.v. to WNV-infected Ccl7(-/-) mice and observed a significant increase in monocytes and neutrophils, but not CD8(+) T cells, within the CNS, as well as an enhancement in survival compared with Ccl7(-/-) mice treated with a linear CCL7 control peptide. Our experiments suggest that CCL7 is an important protective signal involved in leukocyte trafficking during WNV infection, and it may have therapeutic potential for the treatment of acute viral infections of the CNS.


Assuntos
Movimento Celular , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Leucocitose/metabolismo , Monócitos/metabolismo , Febre do Nilo Ocidental/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/virologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL7/genética , Quimiocina CCL7/farmacologia , Chlorocebus aethiops , Encefalite Viral/genética , Encefalite Viral/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Expressão Gênica , Interações Hospedeiro-Patógeno , Leucocitose/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia
9.
Nat Commun ; 6: 8164, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26353940

RESUMO

Autoimmunity and macrophage recruitment into the central nervous system (CNS) are critical determinants of neuroinflammatory diseases. However, the mechanisms that drive immunological responses targeted to the CNS remain largely unknown. Here we show that fibrinogen, a central blood coagulation protein deposited in the CNS after blood-brain barrier disruption, induces encephalitogenic adaptive immune responses and peripheral macrophage recruitment into the CNS leading to demyelination. Fibrinogen stimulates a unique transcriptional signature in CD11b(+) antigen-presenting cells inducing the recruitment and local CNS activation of myelin antigen-specific Th1 cells. Fibrinogen depletion reduces Th1 cells in the multiple sclerosis model, experimental autoimmune encephalomyelitis. Major histocompatibility complex (MHC) II-dependent antigen presentation, CXCL10- and CCL2-mediated recruitment of T cells and macrophages, respectively, are required for fibrinogen-induced encephalomyelitis. Inhibition of the fibrinogen receptor CD11b/CD18 protects from all immune and neuropathologic effects. Our results show that the final product of the coagulation cascade is a key determinant of CNS autoimmunity.


Assuntos
Autoimunidade/imunologia , Encéfalo/imunologia , Doenças Desmielinizantes/imunologia , Encefalomielite Autoimune Experimental/imunologia , Fibrinogênio/imunologia , Genes MHC da Classe II/imunologia , Macrófagos/imunologia , Medula Espinal/imunologia , Células Th1/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Autoimunidade/efeitos dos fármacos , Autoimunidade/genética , Barreira Hematoencefálica , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Receptor 1 de Quimiocina CX3C , Proliferação de Células , Quimiocina CCL2/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quimiocinas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Doenças Desmielinizantes/genética , Fibrina , Fibrinogênio/farmacologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Genes MHC da Classe II/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microglia , Glicoproteína Mielina-Oligodendrócito/imunologia , Ratos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
10.
J Exp Med ; 212(4): 447-56, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25800956

RESUMO

Monocytes are recruited from the blood to sites of inflammation, where they contribute to wound healing and tissue repair. There are at least two subsets of monocytes: classical or proinflammatory (CCR2(hi)CX3CR1(low)) and nonclassical, patrolling, or alternative (CCR2(low)CX3CR1(hi)) monocytes. Using spinning-disk confocal intravital microscopy and mice with fluorescent reporters for each of these subsets, we were able to track the dynamic spectrum of monocytes that enter a site of sterile hepatic injury in vivo. We observed that the CCR2(hi)CX3CR1(low) monocytes were recruited early and persisted for at least 48 h, forming a ringlike structure around the injured area. These monocytes transitioned, in situ, from CCR2(hi)Cx3CR1(low) to CX3CR1(hi)CCR2(low) within the ringlike structure and then entered the injury site. This phenotypic conversion was essential for optimal repair. These results demonstrate a local, cytokine driven reprogramming of classic, proinflammatory monocytes into nonclassical or alternative monocytes to facilitate proper wound-healing.


Assuntos
Movimento Celular/imunologia , Reprogramação Celular/imunologia , Fígado , Monócitos/imunologia , Receptores CCR2/imunologia , Cicatrização/imunologia , Animais , Receptor 1 de Quimiocina CX3C , Fígado/imunologia , Fígado/lesões , Fígado/patologia , Camundongos , Camundongos Knockout , Microscopia Confocal , Monócitos/patologia , Receptores de Quimiocinas/imunologia
11.
J Exp Med ; 211(8): 1533-49, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25002752

RESUMO

In the human disorder multiple sclerosis (MS) and in the model experimental autoimmune encephalomyelitis (EAE), macrophages predominate in demyelinated areas and their numbers correlate to tissue damage. Macrophages may be derived from infiltrating monocytes or resident microglia, yet are indistinguishable by light microscopy and surface phenotype. It is axiomatic that T cell-mediated macrophage activation is critical for inflammatory demyelination in EAE, yet the precise details by which tissue injury takes place remain poorly understood. In the present study, we addressed the cellular basis of autoimmune demyelination by discriminating microglial versus monocyte origins of effector macrophages. Using serial block-face scanning electron microscopy (SBF-SEM), we show that monocyte-derived macrophages associate with nodes of Ranvier and initiate demyelination, whereas microglia appear to clear debris. Gene expression profiles confirm that monocyte-derived macrophages are highly phagocytic and inflammatory, whereas those arising from microglia demonstrate an unexpected signature of globally suppressed cellular metabolism at disease onset. Distinguishing tissue-resident macrophages from infiltrating monocytes will point toward new strategies to treat disease and promote repair in diverse inflammatory pathologies in varied organs.


Assuntos
Sistema Nervoso Central/patologia , Inflamação/patologia , Microglia/patologia , Monócitos/patologia , Animais , Receptor 1 de Quimiocina CX3C , Forma Celular , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Homeostase/genética , Humanos , Inflamação/genética , Cinética , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/ultraestrutura , Monócitos/ultraestrutura , Nós Neurofibrosos/patologia , Receptores CCR2/metabolismo , Receptores de Quimiocinas/metabolismo , Transdução de Sinais/genética , Fatores de Tempo
12.
Bioorg Med Chem Lett ; 24(7): 1843-5, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24613378

RESUMO

We describe novel alkylsulfones as potent CCR2 antagonists with reduced hERG channel activity and improved pharmacokinetics over our previously described antagonists. Several of these new alkylsulfones have a profile that includes functional antagonism of CCR2, in vitro microsomal stability, and oral bioavailability. With this improved profile, we demonstrate that two of these antagonists, 2 and 12, are orally efficacious in an animal model of inflammatory recruitment.


Assuntos
Receptores CCR2/antagonistas & inibidores , Sulfonas/química , Animais , Cicloexanos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Conformação Molecular , Relação Estrutura-Atividade
13.
EMBO Mol Med ; 5(11): 1775-93, 2013 11.
Artigo em Inglês | MEDLINE | ID: mdl-24142887

RESUMO

Atrophic age-related macular degeneration (AMD) is associated with the subretinal accumulation of mononuclear phagocytes (MPs). Their role in promoting or inhibiting retinal degeneration is unknown. We here show that atrophic AMD is associated with increased intraocular CCL2 levels and subretinal CCR2(+) inflammatory monocyte infiltration in patients. Using age- and light-induced subretinal inflammation and photoreceptor degeneration in Cx3cr1 knockout mice, we show that subretinal Cx3cr1 deficient MPs overexpress CCL2 and that both the genetic deletion of CCL2 or CCR2 and the pharmacological inhibition of CCR2 prevent inflammatory monocyte recruitment, MP accumulation and photoreceptor degeneration in vivo. Our study shows that contrary to CCR2 and CCL2, CX3CR1 is constitutively expressed in the retina where it represses the expression of CCL2 and the recruitment of neurotoxic inflammatory CCR2(+) monocytes. CCL2/CCR2 inhibition might represent a powerful tool for controlling inflammation and neurodegeneration in AMD.


Assuntos
Degeneração Macular/imunologia , Monócitos/imunologia , Células Fotorreceptoras de Vertebrados/imunologia , Receptores CCR2/imunologia , Receptores de Quimiocinas/deficiência , Animais , Receptor 1 de Quimiocina CX3C , Quimiocina CCL2/imunologia , Feminino , Humanos , Inflamação/genética , Inflamação/imunologia , Degeneração Macular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Receptores CCR2/genética , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia
14.
Nat Med ; 19(10): 1273-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24037091

RESUMO

Acute myocardial infarction is a severe ischemic disease responsible for heart failure and sudden death. Here, we show that after acute myocardial infarction in mice, mature B lymphocytes selectively produce Ccl7 and induce Ly6C(hi) monocyte mobilization and recruitment to the heart, leading to enhanced tissue injury and deterioration of myocardial function. Genetic (Baff receptor deficiency) or antibody-mediated (CD20- or Baff-specific antibody) depletion of mature B lymphocytes impeded Ccl7 production and monocyte mobilization, limited myocardial injury and improved heart function. These effects were recapitulated in mice with B cell-selective Ccl7 deficiency. We also show that high circulating concentrations of CCL7 and BAFF in patients with acute myocardial infarction predict increased risk of death or recurrent myocardial infarction. This work identifies a crucial interaction between mature B lymphocytes and monocytes after acute myocardial ischemia and identifies new therapeutic targets for acute myocardial infarction.


Assuntos
Linfócitos B/fisiologia , Coração/fisiopatologia , Monócitos/fisiologia , Infarto do Miocárdio/fisiopatologia , Animais , Fator Ativador de Células B/sangue , Linfócitos B/metabolismo , Quimiocina CCL7/biossíntese , Quimiocina CCL7/sangue , Humanos , Depleção Linfocítica , Camundongos , Infarto do Miocárdio/metabolismo , Transdução de Sinais
15.
J Immunol ; 191(3): 1063-72, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23817416

RESUMO

Fractalkine, a chemokine anchored to neurons or peripheral endothelial cells, serves as an adhesion molecule or as a soluble chemoattractant. Fractalkine binds CX3CR1 on microglia and circulating monocytes, dendritic cells, and NK cells. The aim of this study is to determine the role of CX3CR1 in the trafficking and function of myeloid cells to the CNS during experimental autoimmune encephalomyelitis (EAE). Our results show that, in models of active EAE, Cx3cr1(-/-) mice exhibited more severe neurologic deficiencies. Bone marrow chimeric mice confirmed that CX3CR1 deficiency in bone marrow enhanced EAE severity. Notably, CX3CR1 deficiency was associated with an increased accumulation of CD115(+)Ly6C(-)CD11c(+) dendritic cells into EAE-affected brains that correlated with enhanced demyelination and neuronal damage. Furthermore, higher IFN-γ and IL-17 levels were detected in cerebellar and spinal cord tissues of CX3CR1-deficient mice. Analyses of peripheral responses during disease initiation revealed a higher frequency of IFN-γ- and IL-17-producing T cells in lymphoid tissues of CX3CR1-deficient as well as enhanced T cell proliferation induced by CX3CR1-deficient dendritic cells. In addition, adoptive transfer of myelin oligodendrocyte glycoprotein35-55-reactive wild-type T cells induced substantially more severe EAE in CX3CR1-deficient recipients when compared with wild-type recipients. Collectively, the data demonstrate that besides its role in chemoattraction, CX3CR1 is a key regulator of myeloid cell activation contributing to the establishment of adaptive immune responses.


Assuntos
Autoimunidade , Encefalomielite Autoimune Experimental/imunologia , Inflamação/imunologia , Células Mieloides/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores de Citocinas/metabolismo , Receptores de HIV/metabolismo , Imunidade Adaptativa , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Células da Medula Óssea , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Receptor 1 de Quimiocina CX3C , Proliferação de Células , Sistema Nervoso Central/citologia , Quimera , Doenças Desmielinizantes/genética , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Interferon gama/metabolismo , Interleucina-1/metabolismo , Interleucina-17/metabolismo , Ativação Linfocitária/imunologia , Tecido Linfoide/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/genética , Receptores de Citocinas/imunologia , Receptores de HIV/imunologia , Linfócitos T/metabolismo
16.
Biochem Biophys Res Commun ; 438(2): 257-63, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23872063

RESUMO

Most end-stage renal disease kidneys display accumulation of extracellular matrix (ECM) in the renal tubular compartment (tubular interstitial fibrosis - TIF) which is strongly correlated with the future loss of renal function. Although inflammation is a key event in the development of TIF, it can also have a beneficial anti-fibrotic role depending in particular on the stage of the pathology. Chemokines play an important role in monocyte extravasation in the inflammatory process. CCL2 has already been shown to be involved in the development of TIF but CCL7, a close relative of CCL2 and able to bind to similar receptors, has not been studied in renal disease. We therefore studied chemokine CCL7 in a model of unilateral ureteral obstruction (UUO)-induced TIF. We observed that the role of CCL7 differs depending on the stage of the pathology. In early stages (0-8 days), CCL7 deficient (CCL7-KO) mice displayed attenuated TIF potentially involving two mechanisms: an early (0-3 days) decrease of inflammatory cell infiltration followed (3-8 days) by a decrease in tubular ECM production independent of inflammation. In contrast, during later stages of obstruction (10-14 days), CCL7-KO mice displayed increased TIF which was again associated with reduced inflammation. Interestingly, the switch between this anti- to profibrotic effect was accompanied by an increased influx of immunosuppressive regulatory T cells. In conclusion, these results highlight for the first time a dual role for CCL7 in the development of renal TIF, deleterious in early stages but beneficial during later stages.


Assuntos
Quimiocina CCL7/fisiologia , Túbulos Renais/metabolismo , Animais , Linhagem Celular , Quimiocina CCL7/genética , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Inflamação/patologia , Rim/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/metabolismo , Fatores de Tempo
18.
Proc Natl Acad Sci U S A ; 109(44): 18150-5, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23071306

RESUMO

Under most physiological circumstances, monocytes are excluded from parenchymal CNS tissues. When widespread monocyte entry occurs, their numbers decrease shortly after engraftment in the presence of microglia. However, some disease processes lead to focal and selective loss, or dysfunction, of microglia, and microglial senescence typifies the aged brain. In this regard, the long-term engraftment of monocytes in the microglia-depleted brain remains unknown. Here, we report a model in which a niche for myeloid cells was created through microglia depletion. We show that microglia-depleted brain regions of CD11b-HSVTK transgenic mice are repopulated with new Iba-1-positive cells within 2 wk. The engrafted cells expressed high levels of CD45 and CCR2 and appeared in a wave-like pattern frequently associated with blood vessels, suggesting the engrafted cells were peripheral monocytes. Although two times more numerous and morphologically distinct from resident microglia up to 27 wk after initial engraftment, the overall distribution of the engrafted cells was remarkably similar to that of microglia. Two-photon in vivo imaging revealed that the engrafted myeloid cells extended their processes toward an ATP source and displayed intracellular calcium transients. Moreover, the engrafted cells migrated toward areas of kainic acid-induced neuronal death. These data provide evidence that circulating monocytes have the potential to occupy the adult CNS myeloid niche normally inhabited by microglia and identify a strong homeostatic drive to maintain the myeloid component in the mature brain.


Assuntos
Sistema Nervoso Central/citologia , Homeostase , Microglia/citologia , Trifosfato de Adenosina/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Camundongos , Microglia/metabolismo , Timidina Quinase/genética
19.
J Pharmacol Exp Ther ; 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22378937

RESUMO

The following manuscript was published as a Fast Forward article on February 29, 2012: Sullivan TJ, Dairaghi DJ, Krasinski A, Miao Z, Wang Y, Zhao BN, Baumgart T, Berahovich R, Ertl LS, Pennell A, Seitz L, Miao S, Ungashe S, Wei Z, Johnson D, Boring L, Tsou C-L, Charo IF, Bekker P, Schall TJ, and Jaen JC, Characterization of CCX140-B, an orally bioavailable antagonist of the CCR2 chemokine receptor, for the treatment of type 2 diabetes and associated complications. J Pharmacol Exp Ther jpet.111.190918; doi:10.1124/jpet.111.190918 It was later found that the chemical identity of a compound cited in the article, CCX140-B, was not sufficiently disclosed. The authors are unable, at this time, to provide the chemical identity of CCX140-B in accordance with the editorial policies of The Journal of Pharmacology and Experimental Therapeutics. As a result, the authors have voluntarily withdrawn this manuscript from publication. We apologize for any inconvenience this may cause JPET's readers.

20.
J Immunol ; 188(1): 29-36, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22079990

RESUMO

Microglial cells are difficult to track during development because of the lack of specific reagents for myeloid subpopulations. To further understand how myeloid lineages differentiate during development to create microglial cells, we investigated CX3CR1 and CCR2 transcription unit activation in Cx3cr1(+/GFP)CCR2(+/RFP) knockin fluorescent protein reporter mice. The principal findings include: 1) CX3CR1(+) cells localized to the aorta-gonad-mesonephros region, and visualized at embryonic day (E)9.0 in the yolk sac and neuroectoderm; 2) at E10.5, CX3CR1 single-positive microglial cells were visualized penetrating the neuroepithelium; and 3) CX3CR1 and CCR2 distinguished infiltrating macrophages from resident surveillant or activated microglia within tissue sections and by flow cytometric analyses. Our results support the contribution of the yolk sac as a source of microglial precursors. We provide a novel model to monitor chemokine receptor expression changes in microglia and myeloid cells early (E8.0-E10.5) in development and during inflammatory conditions, which have been challenging to visualize in mammalian tissues.


Assuntos
Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Microglia/metabolismo , Receptores CCR2/biossíntese , Receptores de Quimiocinas/biossíntese , Animais , Receptor 1 de Quimiocina CX3C , Embrião de Mamíferos/imunologia , Feminino , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microglia/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Especificidade de Órgãos/fisiologia , Receptores CCR2/genética , Receptores CCR2/imunologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...