Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pigment Cell Melanoma Res ; 35(5): 506-516, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35816394

RESUMO

Waardenburg syndrome type 4 (WS4) combines abnormal development of neural crest cell (NCC)-derived melanocytes (causing depigmentation and inner ear dysfunction) and enteric nervous system (causing aganglionic megacolon). The full spectrum of WS4 phenotype is present in Spot mice, in which an insertional mutation close to a silencer element leads to NCC-specific upregulation of the transcription factor-coding gene Nr2f1. These mice were previously found to develop aganglionic megacolon because of NR2F1-induced premature differentiation of enteric neural progenitors into enteric glia. Intriguingly, this prior work also showed that inner ear dysfunction in Spot mutants specifically affects balance but not hearing, consistent with the absence of melanocytes in the vestibule only. Here, we report an analysis of the effect of Nr2f1 upregulation on the development of both inner ear and skin melanocytes, also taking in consideration their origin relative to the dorsolateral and ventral NCC migration pathways. In the trunk, we found that NR2F1 overabundance in Spot NCCs forces dorso-laterally migrating melanoblasts to abnormally adopt a Schwann cell precursor (SCP) fate and conversely prevents ventrally migrating SCPs to normally adopt a melanoblast fate. In the head, Nr2f1 upregulation appears not to be uniform, which might explain why SCP-derived melanocytes do colonize the cochlea while non-SCP-derived melanocytes cannot reach the vestibule. Collectively, these data point to a key role for NR2F1 in the control of SCP-vs-melanocyte fate choice and unveil a new pathogenic mechanism for WS4. Moreover, our data argue against the proposed existence of a transit-amplifying compartment of melanocyte precursors in hair follicles.


Assuntos
Doença de Hirschsprung , Síndrome de Waardenburg , Animais , Diferenciação Celular/genética , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/patologia , Melanócitos/metabolismo , Camundongos , Crista Neural/metabolismo , Células de Schwann , Síndrome de Waardenburg/genética
2.
Gastroenterology ; 159(5): 1824-1838.e17, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32687927

RESUMO

BACKGROUND & AIMS: Hirschsprung disease (HSCR) is a life-threatening birth defect in which the distal colon is devoid of enteric neural ganglia. HSCR is treated by surgical removal of aganglionic bowel, but many children continue to have severe problems after surgery. We studied whether administration of glial cell derived neurotrophic factor (GDNF) induces enteric nervous system regeneration in mouse models of HSCR. METHODS: We performed studies with four mouse models of HSCR: Holstein (HolTg/Tg, a model for trisomy 21-associated HSCR), TashT (TashTTg/Tg, a model for male-biased HSCR), Piebald-lethal (Ednrbs-l//s-l, a model for EDNRB mutation-associated HSCR), and Ret9/- (with aganglionosis induced by mycophenolate). Mice were given rectal enemas containing GDNF or saline (control) from postnatal days 4 through 8. We measured survival times of mice, and colon tissues were analyzed by histology, immunofluorescence, and immunoblots. Neural ganglia regeneration and structure, bowel motility, epithelial permeability, muscle thickness, and neutrophil infiltration were studied in colon tissues and in mice. Stool samples were collected, and microbiomes were analyzed by 16S rRNA gene sequencing. Time-lapse imaging and genetic cell-lineage tracing were used to identify a source of GDNF-targeted neural progenitors. Human aganglionic colon explants from children with HSCR were cultured with GDNF and evaluated for neurogenesis. RESULTS: GDNF significantly prolonged mean survival times of HolTg/Tg mice, Ednrbs-l//s-l mice, and male TashTTg/Tg mice, compared with control mice, but not Ret9/- mice (which had mycophenolate toxicity). Mice given GDNF developed neurons and glia in distal bowel tissues that were aganglionic in control mice, had a significant increase in colon motility, and had significant decreases in epithelial permeability, muscle thickness, and neutrophil density. We observed dysbiosis in fecal samples from HolTg/Tg mice compared with feces from wild-type mice; fecal microbiomes of mice given GDNF were similar to those of wild-type mice except for Bacteroides. Exogenous luminal GDNF penetrated aganglionic colon epithelium of HolTg/Tg mice, inducing production of endogenous GDNF, and new enteric neurons and glia appeared to arise from Schwann cells within extrinsic nerves. GDNF application to cultured explants of human aganglionic bowel induced proliferation of Schwann cells and formation of new neurons. CONCLUSIONS: GDNF prolonged survival, induced enteric neurogenesis, and improved colon structure and function in 3 mouse models of HSCR. Application of GDNF to cultured explants of aganglionic bowel from children with HSCR induced proliferation of Schwann cells and formation of new neurons. GDNF might be developed for treatment of HSCR.


Assuntos
Colo/efeitos dos fármacos , Colo/inervação , Sistema Nervoso Entérico/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Doença de Hirschsprung/tratamento farmacológico , Regeneração Nervosa/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Disbiose , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/fisiopatologia , Microbioma Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/patologia , Doença de Hirschsprung/fisiopatologia , Humanos , Absorção Intestinal/efeitos dos fármacos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Permeabilidade , Recuperação de Função Fisiológica , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Células de Schwann/patologia , Técnicas de Cultura de Tecidos
3.
Neurogenesis (Austin) ; 4(1): e1293958, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28352645

RESUMO

Most of gastrointestinal functions are controlled by the enteric nervous system (ENS), which contains a vast diversity of neurons and glial cells. In accordance with its key role, defective ENS formation is the cause of several diseases that affect quality of life and can even be life-threatening. Treatment of these diseases would greatly benefit from a better understanding of the molecular mechanisms underlying ENS formation. In this regard, although several important discoveries have been made over the years, how the full spectrum of enteric neuronal and glial cell subtypes is generated from neural crest cells during development still remains enigmatic. Because they also have stem cell properties, such knowledge would be especially important for the enteric glial cell lineage. In a recent study, we identified the NR2F1 transcription factor as a new key regulator of enteric gliogenesis. Here we discuss our recent findings and briefly review what is already known about the mechanisms and signaling pathways involved in enteric gliogenesis, with an emphasis on Hedgehog and Notch signaling.

4.
Dis Model Mech ; 9(11): 1283-1293, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27585883

RESUMO

Waardenburg syndrome is a neurocristopathy characterized by a combination of skin and hair depigmentation, and inner ear defects. In the type 4 form, these defects show comorbidity with Hirschsprung disease, a disorder marked by an absence of neural ganglia in the distal colon, triggering functional intestinal obstruction. Here, we report that the Spot mouse line - obtained through an insertional mutagenesis screen for genes involved in neural crest cell (NCC) development - is a model for Waardenburg syndrome type 4. We found that the Spot insertional mutation causes overexpression of an overlapping gene pair composed of the transcription-factor-encoding Nr2f1 and the antisense long non-coding RNA A830082K12Rik in NCCs through a mechanism involving relief of repression of these genes. Consistent with the previously described role of Nr2f1 in promoting gliogenesis in the central nervous system, we further found that NCC-derived progenitors of the enteric nervous system fail to fully colonize Spot embryonic guts owing to their premature differentiation in glial cells. Taken together, our data thus identify silencer elements of the Nr2f1-A830082K12Rik gene pair as new candidate loci for Waardenburg syndrome type 4.


Assuntos
Fator I de Transcrição COUP/metabolismo , Doença de Hirschsprung/genética , Crista Neural/metabolismo , Crista Neural/patologia , RNA Longo não Codificante/metabolismo , Regulação para Cima/genética , Síndrome de Waardenburg/genética , Animais , Animais Recém-Nascidos , Sequência de Bases , Diferenciação Celular/genética , Endolinfa/metabolismo , Sistema Nervoso Entérico/patologia , Melanócitos/metabolismo , Melanócitos/patologia , Camundongos , Camundongos Mutantes , Mutagênese Insercional , Neuroglia/metabolismo , Neuroglia/patologia , Fenótipo , Pigmentação/genética , RNA Longo não Codificante/genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...