Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32573, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961942

RESUMO

In this study, a novel 3,3'-bipyrazolo [3,4-b]pyridine-type structure was synthesized from 5-acetylamino-3-methyl-1-phenylpyrazole using the Vilsmeier-Haack reaction as a key step. The spectroscopic properties and structural elucidation of the compound were determined with the use of FT-IR, HRMS, 1H NMR, and 13C NMR. Likewise, the theoretical analysis of the IR and NMR spectra allowed peaks to be assigned and a solid correlation was demonstrated between the experimental and theoretical results. Finally, ab initio calculations based on the density functional theory method at the B3LYP/6-311G (d,p) level of theory were used to determine the conformational energy barrier, facilitating the identification of the most probable conformers of the synthesized compound. Overall, our findings contribute to the understanding of bipyrazolo [3,4-b]pyridine derivatives.

2.
R Soc Open Sci ; 11(3): 231128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455992

RESUMO

Ultrasound-assisted synthesis of pyrimido|quinolindione derivatives via a multicomponent reaction and subsequent formylation with Vilsmeier-Haack reagent were performed. Compounds were prepared by a one-pot method from aminopyrimidinones, dimedone and aromatic aldehydes through a Mannich-type reaction sequence, and then functionalized under ultrasound irradiation and Vilsmeier-Haack conditions to give ß-chlorovinylaldehyde products. Ultrasonically assisted reactions, experimental simplicity, good yields without using metallic catalysts and the control of hazardous material release are features of this simple procedure.

3.
J Proteome Res ; 23(1): 430-448, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38127799

RESUMO

NMR-based metabolomics aims at recovering biological information by comparing spectral data from samples of biological interest and appropriate controls. Any statistical analysis performed on the data matrix relies on the proper peak alignment to produce meaningful results. Through the last decades, several peak alignment algorithms have been proposed, as well as alternatives like spectral binning or strategies for annotation and quantification, the latter depending on reference databases. Most of the alignment algorithms, mainly based on segmentation of the spectra, present limitations for regions with peak overlap or cases of frequency order exchange. Here, we present our multiplet-assisted peak alignment algorithm, a new methodology that consists of aligning peaks by matching multiplet profiles of f1 traces from J-resolved spectra. A correspondence matrix with the linked f1 traces is built, and multivariate data analysis can be performed on it to obtain useful information from the data, overcoming the issues of peak overlap and frequency crossovers. Statistical total correlation spectroscopy can be applied on the matrix as well, toward a better identification of molecules of interest. The results can be queried on one-dimensional (1D) 1H databases or can be directly coupled to our previously published Chemical Shift Multiplet Database.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Algoritmos
4.
J Proteome Res ; 19(8): 2977-2988, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32450699

RESUMO

NMR-based metabolomics requires proper identification of metabolites to draw conclusions from the system under study. Normally, multivariate data analysis is performed using 1D 1H NMR spectra, and identification of peaks (and then compounds) relevant to the classification is accomplished using database queries as a first step. 1D 1H NMR spectra of complex mixtures often suffer from peak overlap. To overcome this issue, several studies employed the projections of the (tilted and symmetrized) 2D 1H J-resolved (JRES) spectra, p-JRES, which are similar to 1D 1H decoupled spectra. Nonetheless, there are no public databases available that allow searching for chemical shift spectral data for multiplets. We present the Chemical Shift Multiplet Database (CSMDB), built utilizing JRES spectra obtained from the Birmingham Metabolite Library. The CSMDB provides scoring accounting for both matched and unmatched peaks from a query list and the database hits. This input list is generated from a projection of a 2D statistical correlation analysis on the JRES spectra, p-(JRES-STOCSY), being able to compare the multiplets for the matched peaks, in essence, the f1 traces from the JRES-STOCSY spectrum and from the database hit. The inspection of the unmatched peaks for the database hit allows the retrieval of peaks in the query list that have a decreased correlation coefficient due to low intensities. The CSMDB is coupled to "ConQuer ABC", which permits the assessment of biological correlation by means of consecutive queries with the unmatched peaks in the first and subsequent queries.


Assuntos
Metabolômica , Correlação de Dados , Bases de Dados Factuais , Espectroscopia de Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética
5.
J Proteome Res ; 18(5): 2241-2253, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30916564

RESUMO

The identification of metabolites in complex biological matrices is a challenging task in 1D 1H-NMR-based metabolomics studies. Statistical total correlation spectroscopy (STOCSY) has emerged for aiding the structural elucidation by revealing the peaks that present a high correlation to a driver peak of interest (which would likely belong to the same molecule). However, in these studies, the signals from metabolites are normally present as a mixture of overlapping resonances, limiting the performance of STOCSY. As an alternative to avoid the overlap issue, 2D 1H homonuclear J-resolved (JRES) spectra were projected, in their usual tilted and symmetrized processed form, and STOCSY was applied on these 1D projections (p-JRES-STOCSY). Nonetheless, this approach suffers in cases where the signals are very close. In addition, STOCSY was applied to the whole JRES spectra (also tilted) to identify correlated multiplets, although the overlap issue in itself was not addressed directly and the subsequent search in databases is complicated in cases of higher order coupling. With these limitations in mind, in the present work, we propose a new methodology based on the application of STOCSY on a set of nontilted JRES spectra, detecting peaks that would overlap in 1D spectra of the same sample set. Correlation comparison analysis for peak overlap detection (COCOA-POD) is able to reconstruct projected 1D STOCSY traces that result in more suitable database queries, as all peaks are summed at their f2 resonances instead of the resonance corresponding to the multiplet center in the tilted JRES spectra. (The peak dispersion and resolution enhancement gained are not sacrificed by the projection.) Besides improving database queries with better peak lists obtained from the projections of the 2D STOCSY analysis, the overlap region is examined, and the multiplet itself is analyzed from the correlation trace at 45° to obtain a cleaner multiplet profile, free from contributions from uncorrelated neighboring peaks.


Assuntos
Correlação de Dados , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Metaboloma , Metabolômica/estatística & dados numéricos , Ácido 3-Hidroxibutírico/sangue , Alanina/sangue , Glicemia/análise , Bases de Dados Factuais , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos
6.
J Org Chem ; 82(23): 12674-12681, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29125772

RESUMO

A novel series of fully substituted pyrazolo[3,4-b]pyridines 4 has been prepared in a regioselective manner by the microwave-assisted reaction between N-substituted 5-aminopyrazoles 1 and 3-(3-oxo-2-benzofuran-1(3H)-ylidene)pentane-2,4-dione (2). This is the second reported example of a cyclocondensation reaction using substrate 2 as a 1,3-bis-electrophilic reagent. Remarkably, this synthesis offers functionalized products with acetyl and carboxyl groups in one step, in good yields, and with short reaction times. Additionally, the cyclization intermediate 3 was isolated, allowing us to postulate a mechanism for this reaction, which is initiated via isobenzofuranone ring opening of 2 in a Michael-type reaction. The structures of the products and regioselectivity of the reactions were determined on the basis of NMR measurements and X-ray diffraction. For this new reaction using substrate 2, the optimal reaction conditions and its scope were investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA