Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 90: 176-187, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34688192

RESUMO

In this study, Monte Carlo codes, Geant4 and MCNP6, were used to characterize the fast neutron therapeutic beam produced at iThemba LABS in South Africa. Experimental and simulation results were compared using the latest generation of Silicon on Insulator (SOI) microdosimeters from the Centre for Medical Radiation Physics (CMRP). Geant4 and MCNP6 were able to successfully model the neutron gantry and simulate the expected neutron energy spectrum produced from the reaction by protons bombarding a 9Be target. The neutron beam was simulated in a water phantom and its characteristics recorded by the silicon microdosimeters; bare and covered by a 10B enriched boron carbide converter, at different positions. The microdosimetric quantities calculated using Geant4 and MCNP6 are in agreement with experimental measurements. The thermal neutron sensitivity and production of 10B capture products in the p+ boron-implanted dopant regions of the Bridge microdosimeter is investigated. The obtained results are useful for the future development of dedicated SOI microdosimeters for Boron Neutron Capture Therapy (BNCT). This paper provides a benchmark comparison of Geant4 and MCNP6 capabilities in the context of further applications of these codes for neutron microdosimetry.


Assuntos
Terapia por Captura de Nêutron de Boro , Nêutrons Rápidos , Método de Monte Carlo , Nêutrons , Radiometria , Silício
2.
Med Phys ; 47(7): 3123-3132, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32279312

RESUMO

PURPOSE: This work has two related objectives. The first is to estimate the relative biological effectiveness of two radioactive heavy ion beams based on experimental measurements, and compare these to the relative biological effectiveness of corresponding stable isotopes to determine whether they are therapeutically equivalent. The second aim is to quantitatively compare the quality of images acquired postirradiation using an in-beam whole-body positron emission tomography scanner for range verification quality assurance. METHODS: The energy deposited by monoenergetic beams of 11 C at 350 MeV/u, 15 O at 250 MeV/u, 12 C at 350 MeV/u, and 16 O at 430 MeV/u was measured using a cruciform transmission ionization chamber in a water phantom at the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. Dose-mean lineal energy was measured at various depths along the path of each beam in a water phantom using a silicon-on-insulator mushroom microdosimeter. Using the modified microdosimetric kinetic model, the relative biological effectiveness at 10% survival fraction of the radioactive ion beams was evaluated and compared to that of the corresponding stable ions along the path of the beam. Finally, the postirradiation distributions of positron annihilations resulting from the decay of positron-emitting nuclei were measured for each beam in a gelatin phantom using the in-beam whole-body positron emission tomography scanner at HIMAC. The depth of maximum positron-annihilation density was compared with the depth of maximum dose deposition and the signal-to-background ratios were calculated and compared for images acquired over 5 and 20 min postirradiation of the phantom. RESULTS: In the entrance region, the h b o x RBE 10 was 1.2 ± 0.1 for both 11 C and 12 C beams, while for 15 O and 16 O it was 1.4 ± 0.1 and 1.3 ± 0.1, respectively. At the Bragg peak, the RBE 10 was 2.7 ± 0.4 for 11 C and 2.9 ± 0.4 for 12 C, while for 15 O and 16 O it was 2.7 ± 0.4 and 2.8 ± 0.4, respectively. In the tail region, RBE 10 could only be evaluated for carbon; the RBE 10 was 1.6 ± 0.2 and 1.5 ± 0.1 for 11 C and 12 C, respectively. Positron emission tomography images obtained from gelatin targets irradiated by radioactive ion beams exhibit markedly improved signal-to-background ratios compared to those obtained from targets irradiated by nonradioactive ion beams, with 5-fold and 11-fold increases in the ratios calculated for the 15 O and 11 C images compared with the values obtained for 16 O and 12 C, respectively. The difference between the depth of maximum dose and the depth of maximum positron annihilation density is 2.4 ± 0.8 mm for 11 C, compared to -5.6 ± 0.8 mm for 12 C and 0.9 ± 0.8 mm for 15 O vs -6.6 ± 0.8 mm for 16 O. CONCLUSIONS: The RBE 10 values for 11 C and 15 O were found to be within the 95% confidence interval of the RBEs estimated for their corresponding stable isotopes across each of the regions in which it was evaluated. Furthermore, for a given dose, 11 C and 15 O beams produce much better quality images for range verification compared with 12 C and 16 O, in particular with regard to estimating the location of the Bragg peak.


Assuntos
Radioterapia com Íons Pesados , Tomografia Computadorizada por Raios X , Japão , Imagens de Fantasmas , Radiometria , Eficiência Biológica Relativa
3.
Med Phys ; 47(2): 363-370, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31732963

RESUMO

PURPOSE: The purpose of this study was to study the field size effect on the estimated Relative Biological Effectiveness (RBE) for carbon scanning beam irradiation. METHODS: A silicon-on-insulator (SOI) microdosimeter system developed by the Centre for Medical Radiation Physics, University of Wollongong, Australia, was used for lineal-energy measurements (microdosimetric quantity). The RBE values were derived based on the modified microdosimetric kinetic model (MKM) at different depths in a water phantom in the scanning carbon beam for various scanned areas. RESULTS: Our study shows that the difference in RBE values derived from the SOI microdosimeter measurements with the MKM model and from the Treatment Planning System (TPS). The difference of the RBE values is within 6.5 % at the peak point of the spread-out Bragg Peak (SOBP) region. Compared to the spot-beam, RBE values obtained in the scanned-beam with a larger scanned area of 1.0 × 1.0 cm2 have better agreement with which estimated by the TPS. CONCLUSIONS: This study shows the possibility of using the SOI microdosimeter system as a quality assurance (QA) tool for RBE evaluation in carbon-pencil beam scanning radiotherapy.


Assuntos
Carbono/química , Radioterapia com Íons Pesados/métodos , Imagens de Fantasmas , Dosímetros de Radiação , Eficiência Biológica Relativa , Simulação por Computador , Relação Dose-Resposta à Radiação , Humanos , Cinética , Garantia da Qualidade dos Cuidados de Saúde , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Semicondutores , Silício/química , Propriedades de Superfície
4.
Med Phys ; 45(5): 2299-2308, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29572856

RESUMO

BACKGROUND: The aim of this study was to measure the microdosimetric distributions of a carbon pencil beam scanning (PBS) and passive scattering system as well as to evaluate the relative biological effectiveness (RBE) of different ions, namely 12 C, 14 N, and 16 O, using a silicon-on-insulator (SOI) microdosimeter with well-defined 3D-sensitive volumes (SV). Geant4 simulations were performed with the same experimental setup and results were compared to the experimental results for benchmarking. METHOD: Two different silicon microdosimeters with rectangular parallelepiped and cylindrical shaped SVs, both 10 µm in thickness were used in this study. The microdosimeters were connected to low noise electronics which allowed for the detection of lineal energies as low as 0.15 keV/µm in tissue. The silicon microdosimeters provide extremely high spatial resolution and can be used for in-field and out-of-field measurements in both passive scattering and PBS deliveries. The response of the microdosimeters was studied in 290 MeV/u 12 C, 180 MeV/u 14 N, 400 MeV/u 16 O passive ion beams, and 290 MeV/u 12 C scanning carbon therapy beam at heavy ion medical accelerator in Chiba (HIMAC) and Gunma University Heavy Ion Medical Center (GHMC), Japan, respectively. The microdosimeters were placed at various depths in a water phantom along the central axis of the ion beam, and at the distal part of the Spread Out Bragg Peak (SOBP) in 0.5 mm increments. The RBE values of the pristine Bragg peak (BP) and SOBP were derived using the microdosimetric lineal energy spectra and the modified microdosimetric kinetic model (MKM), using MKM input parameters corresponding to human salivary gland (HSG) tumor cells. Geant4 simulations were performed in order to verify the calculated depth-dose distribution from the treatment planning system (TPS) and to compare the simulated dose-mean lineal energy to the experimental results. RESULTS: For a 180 MeV/u 14 N pristine BP, the dose-mean lineal energy yD¯ obtained with two types of silicon microdosimeters started from approximately 29 keV/µm at the entrance to 92 keV/µm at the BP, with a maximum value in the range of 412 to 438 keV/µm at the distal edge. For 400 MeV/u 16 O ions, the dose-mean lineal energy yD¯ started from about 24 keV/µm at the entrance to 106 keV/µm at the BP, with a maximum value of approximately 381 keV/µm at the distal edge. The maximum derived RBE10 values for 14 N and 16 O ions were found to be 3.10 ± 0.47 and 2.93 ± 0.45, respectively. Silicon microdosimetry measurements using pencilbeam scanning 12 C ions were also compared to the passive scattering beam. CONCLUSIONS: These SOI microdosimeters with well-defined three-dimensional (3D) SVs have applicability in characterizing heavy ion radiation fields and measuring lineal energy deposition with sub-millimeter spatial resolution. It has been shown that the dose-mean lineal energy increased significantly at the distal part of the BP and SOBP due to very high LET particles. Good agreement was observed for the experimental and simulation results obtained with silicon microdosimeters in 14 N and 16 O ion beams, confirming the potential application of SOI microdosimeter with 3D SV for quality assurance in charged particle therapy.


Assuntos
Carbono/uso terapêutico , Nitrogênio/uso terapêutico , Oxigênio/uso terapêutico , Radiometria/instrumentação , Silício , Eficiência Biológica Relativa
5.
Med Phys ; 44(11): 6029-6037, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28905399

RESUMO

PURPOSE: Microdosimetry is a vital tool for assessing the microscopic patterns of energy deposition by radiation, which ultimately govern biological effect. Solid-state, silicon-on-insulator microdosimeters offer an approach for making microdosimetric measurements with high spatial resolution (on the order of tens of micrometers). These high-resolution, solid-state microdosimeters may therefore play a useful role in characterizing proton radiotherapy fields, particularly for making highly resolved measurements within the Bragg peak region. In this work, we obtain microdosimetric measurements with a solid-state microdosimeter (MicroPlus probe) in a clinical, spot-scanning proton beam of small spot size. METHODS: The MicroPlus probe had a 3D single sensitive volume on top of silicon oxide. The sensitive volume had an active cross-sectional area of 250 µm × 10 µm and thickness of 10 µm. The proton facility was a synchrotron-based, spot-scanning system with small spot size (σ ≈ 2 mm). We performed measurements with the clinical beam current (≈1 nA) and had no detected pulse pile-up. Measurements were made in a water-equivalent phantom in water-equivalent depth (WED) increments of 0.25 mm or 1.0 mm along pristine Bragg peaks of energies 71.3 MeV and 159.9 MeV, respectively. For each depth, we measured lineal energy distributions and then calculated the dose-weighted mean lineal energy, y¯D. The measurements were repeated for two field sizes: 4 × 4 cm2 and 20 × 20 cm2 . RESULTS: For both 71.3 MeV and 159.9 MeV and for both field sizes, y¯D increased with depth toward the distal edge of the Bragg peak, a result consistent with Monte Carlo calculations and measurements performed elsewhere. For the 71.3 MeV, 4 × 4 cm2 beam (range at 80% distal falloff, R80  = 3.99 cm), we measured y¯D=1.96±0.08 keV/µm at WED = 2 cm, and y¯D=10.6±0.32 keV/µm at WED = 3.95 cm. For the 71.3 MeV, 20 × 20 cm2 beam, we measured y¯D=2.46±0.12 keV/µm at WED = 2.6 cm, and y¯D=11.0±0.24 keV/µm at WED = 3 cm. For the 159.9 MeV, 4 × 4 cm2 beam (R80  = 17.7 cm), y¯D=2.24±0.15 keV/µm at WED = 5 cm, and y¯D=8.99±0.71 keV/µm at WED = 17.6 cm. For the 159.9 MeV, 20 × 20 cm2 beam, y¯D=2.56±0.10 keV/µm at WED = 5 cm, and y¯D=9.24±0.73 keV/µm at WED = 17.6 cm. CONCLUSIONS: We performed microdosimetric measurements with a novel solid-state, silicon-on-insulator microdosimeter in a clinical spot-scanning proton beam of small spot size and unmodified beam current. For all of the proton field sizes and energies considered, the measurements of y¯D were in agreement with expected trends. Furthermore, we obtained measurements with a spatial resolution of 10 µm in the beam direction. This spatial resolution greatly exceeded that possible with a conventional gaseous tissue-equivalent proportional counter and allowed us to perform a high-resolution investigation within the Bragg peak region. The MicroPlus probe is therefore suitable for applications in proton radiotherapy.


Assuntos
Microtecnologia/métodos , Prótons , Radiometria/métodos , Humanos , Transferência Linear de Energia , Doses de Radiação
6.
Med Phys ; 44(11): 6085-6095, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28887837

RESUMO

PURPOSE: This work aims to characterize a proton pencil beam scanning (PBS) and passive double scattering (DS) systems as well as to measure parameters relevant to the relative biological effectiveness (RBE) of the beam using a silicon on insulator (SOI) microdosimeter with well-defined 3D sensitive volumes (SV). The dose equivalent downstream and laterally outside of a clinical PBS treatment field was assessed and compared to that of a DS beam. METHODS: A novel silicon microdosimeter with well-defined 3D SVs was used in this study. It was connected to low noise electronics, allowing for detection of lineal energies as low as 0.15 keV/µm. The microdosimeter was placed at various depths in a water phantom along the central axis of the proton beam, and at the distal part of the spread-out Bragg peak (SOBP) in 0.5 mm increments. The RBE values of the pristine Bragg peak (BP) and SOBP were derived using the measured microdosimetric lineal energy spectra as inputs to the modified microdosimetric kinetic model (MKM). Geant4 simulations were performed in order to verify the calculated depth-dose distribution from the treatment planning system (TPS) and to compare the simulated dose-mean lineal energy to the experimental results. RESULTS: For a 131 MeV PBS spot (124.6 mm R90 range in water), the measured dose-mean lineal energy yD¯ increased from 2 keV/µm at the entrance to 8 keV/µm in the BP, with a maximum value of 10 keV/µm at the distal edge. The derived RBE distribution for the PBS beam slowly increased from 0.97 ± 0.14 at the entrance to 1.04 ± 0.09 proximal to the BP, then to 1.1 ± 0.08 in the BP, and steeply rose to 1.57 ± 0.19 at the distal part of the BP. The RBE distribution for the DS SOBP beam was approximately 0.96 ± 0.16 to 1.01 ± 0.16 at shallow depths, and 1.01 ± 0.16 to 1.28 ± 0.17 within the SOBP. The RBE significantly increased from 1.29 ± 0.17 to 1.43 ± 0.18 at the distal edge of the SOBP. CONCLUSIONS: The SOI microdosimeter with its well-defined 3D SV has applicability in characterizing proton radiation fields and can measure relevant physical parameters to model the RBE with submillimeter spatial resolution. It has been shown that for a physical dose of 1.82 Gy at the BP, the derived RBE based on the MKM model increased from 1.14 to 1.6 in the BP and its distal part. Good agreement was observed between the experimental and simulation results, confirming the potential application of SOI microdosimeter with 3D SV for quality assurance in proton therapy.


Assuntos
Microtecnologia/instrumentação , Terapia com Prótons , Radiometria/instrumentação , Dosagem Radioterapêutica , Espalhamento de Radiação
7.
Phys Med Biol ; 62(6): 2055-2069, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28151733

RESUMO

Silicon microdosimetry is a promising technology for heavy ion therapy (HIT) quality assurance, because of its sub-mm spatial resolution and capability to determine radiation effects at a cellular level in a mixed radiation field. A drawback of silicon is not being tissue-equivalent, thus the need to convert the detector response obtained in silicon to tissue. This paper presents a method for converting silicon microdosimetric spectra to tissue for a therapeutic 12C beam, based on Monte Carlo simulations. The energy deposition spectra in a 10 µm sized silicon cylindrical sensitive volume (SV) were found to be equivalent to those measured in a tissue SV, with the same shape, but with dimensions scaled by a factor κ equal to 0.57 and 0.54 for muscle and water, respectively. A low energy correction factor was determined to account for the enhanced response in silicon at low energy depositions, produced by electrons. The concept of the mean path length [Formula: see text] to calculate the lineal energy was introduced as an alternative to the mean chord length [Formula: see text] because it was found that adopting Cauchy's formula for the [Formula: see text] was not appropriate for the radiation field typical of HIT as it is very directional. [Formula: see text] can be determined based on the peak of the lineal energy distribution produced by the incident carbon beam. Furthermore it was demonstrated that the thickness of the SV along the direction of the incident 12C ion beam can be adopted as [Formula: see text]. The tissue equivalence conversion method and [Formula: see text] were adopted to determine the RBE10, calculated using a modified microdosimetric kinetic model, applied to the microdosimetric spectra resulting from the simulation study. Comparison of the RBE10 along the Bragg peak to experimental TEPC measurements at HIMAC, NIRS, showed good agreement. Such agreement demonstrates the validity of the developed tissue equivalence correction factors and of the determination of [Formula: see text].


Assuntos
Radioterapia com Íons Pesados , Microtecnologia/métodos , Modelos Teóricos , Imagens de Fantasmas , Radiometria/instrumentação , Silício/análise , Simulação por Computador , Elétrons , Humanos , Transferência Linear de Energia , Método de Monte Carlo , Distribuição Tecidual , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...