Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L726-L740, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847710

RESUMO

Common respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Previous studies indicated a role for mitogen-activated protein kinase 14 (MAPK14) in this type of disease, but clinical trials are unsuccessful to date. Our previous work identified a related but distinct kinase known as MAPK13 that is activated in respiratory airway diseases and is required for mucus production in human cell-culture models. Support for MAPK13 function in these models came from effectiveness of MAPK13 versus MAPK14 gene-knockdown and from first-generation MAPK13-14 inhibitors. However, these first-generation inhibitors were incompletely optimized for blocking activity and were untested in vivo. Here we report the next generation and selection of a potent MAPK13-14 inhibitor (designated NuP-3) that more effectively downregulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment prevents respiratory airway inflammation and mucus production in new minipig models of airway disease triggered by type-2 cytokine challenge or respiratory viral infection. The results thereby provide the next advance in developing a small-molecule kinase inhibitor to address key features of respiratory disease.NEW & NOTEWORTHY This study describes the discovery of a potent mitogen-activated protein kinase 13-14 (MAPK13-14) inhibitor and its effectiveness in models of respiratory airway disease. The findings thereby provide a scheme for pathogenesis and therapy of lung diseases [e.g., asthma, chronic obstructive pulmonary disease (COPD), Covid-19, postviral, and allergic respiratory disease] and related conditions that implicate MAPK13-14 function. The findings also refine a hypothesis for epithelial and immune cell functions in respiratory disease that features MAPK13 as a possible component of this disease process.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Suínos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Porco Miniatura/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Muco/metabolismo , Citocinas/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/metabolismo
2.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37292761

RESUMO

Common respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Previous studies indicated a role for mitogen-activated protein kinase 14 (MAPK14) in this type of disease, but clinical trials are unsuccessful to date. Our previous work identified a related but distinct kinase known as MAPK13 that is activated in respiratory airway diseases and is required for mucus production in human cell-culture models. Support for MAPK13 function in these models came from effectiveness of MAPK13 versus MAPK14 gene-knockdown and from first-generation MAPK13-14 inhibitors. However, these first-generation inhibitors were incompletely optimized for blocking activity and were untested in vivo. Here we report the next generation and selection of a potent MAPK13-14 inhibitor (designated NuP-3) that more effectively down-regulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment prevents respiratory airway inflammation and mucus production in new minipig models of airway disease triggered by type-2 cytokine challenge or respiratory viral infection. The results thereby provide the next advance in developing a small-molecule kinase inhibitor to address key features of respiratory disease.

3.
Ann Am Thorac Soc ; 15(Suppl 4): S260-S265, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759005

RESUMO

New studies of chronic obstructive pulmonary disease (COPD) are revealing the key role of airway epithelial cells and innate immune cells in the initiation, exacerbation, and progression of airway disease. An emerging scheme focuses on expansion of airway progenitor epithelial cells that feed forward for a type 2 immune response and consequent IL-13-driven mucus production that is linked to the morbidity and mortality of COPD. Analysis of human airway progenitor epithelial cells and airway tissue shows that IL-13 signaling to MUC5AC mucin gene expression relies on specific activation of mitogen-activated protein kinase 13, providing a druggable target for attenuating mucus production in the setting of viral infection and other inhaled stimuli of airway inflammation. Moreover, structure-based drug design is delivering highly potent, selective, and nontoxic small-molecule kinase inhibitors of mitogen-activated protein kinase 13 that offer a therapeutic strategy to downregulate excess mucus production to a physiological level and thereby achieve a precision medicine solution to the major health care problem of COPD and related airway diseases.


Assuntos
Células Progenitoras Endoteliais/citologia , Imunidade Inata , Inflamação/imunologia , Mucina-5AC/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Animais , Comunicação Celular , Descoberta de Drogas , Expressão Gênica , Humanos , Inflamação/complicações , Interleucina-13/imunologia , Proteína Quinase 13 Ativada por Mitógeno/imunologia , Mucina-5AC/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...