Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(8): pgad230, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554928

RESUMO

How the neural structures supporting human cognition developed and arose in evolution is an enduring question of interest. Yet, we still lack appropriate procedures to align ages across primates, and this lacuna has hindered progress in understanding the evolution of biological programs. We generated a dataset of unprecedented size consisting of 573 time points from abrupt and gradual changes in behavior, anatomy, and transcription across human and 8 nonhuman primate species. We included time points from diverse human populations to capture within-species variation in the generation of cross-species age alignments. We also extracted corresponding ages from organoids. The identification of corresponding ages across the lifespan of 8 primate species, including apes (e.g., orangutans, gorillas) and monkeys (i.e., marmosets, macaques), reveals that some biological pathways are extended in humans compared with some nonhuman primates. Notably, the human lifespan is unusually extended relative to studied nonhuman primates demonstrating that very old age is a phase of life in humans that does not map to other studied primate species. More generally, our work prompts a reevaluation in the choice of a model system to understand aging given very old age in humans is a period of life without a clear counterpart in great apes.

2.
Commun Biol ; 6(1): 636, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311857

RESUMO

Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.


Assuntos
Encéfalo , Fósseis , Filogenia , Arqueologia , Artefatos
3.
Commun Biol ; 6(1): 655, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344566

RESUMO

Alzheimer's disease (AD) is characterized by brain plaques, tangles, and cognitive impairment. AD is one of the most common age-related dementias in humans. Progress in characterizing AD and other age-related disorders is hindered by a perceived dearth of animal models that naturally reproduce diseases observed in humans. Mice and nonhuman primates are model systems used to understand human diseases. Still, these model systems lack many of the biological characteristics of Alzheimer-like diseases (e.g., plaques, tangles) as they grow older. In contrast, companion animal models (cats and dogs) age in ways that resemble humans. Both companion animal models and humans show evidence of brain atrophy, plaques, and tangles, as well as cognitive decline with age. We embrace a One Health perspective, which recognizes that the health of humans is connected to those of animals, and we illustrate how such a perspective can work synergistically to enhance human and animal health. A comparative biology perspective is ideally suited to integrate insights across veterinary and human medical disciplines and solve long-standing problems in aging.


Assuntos
Doença de Alzheimer , Animais , Gatos , Cães , Humanos , Camundongos , Envelhecimento , Encéfalo , Animais de Estimação , Placa Amiloide
4.
Brain Pathol ; 33(5): e13162, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37218083

RESUMO

Spinalmuscular atrophy (SMA) is a neuromuscular disease that affects as many as 1 in 6000 individuals at birth, making it the leading genetic cause of infant mortality. A growing number of studies indicate that SMA is a multi-system disease. The cerebellum has received little attention even though it plays an important role in motor function and widespread pathology has been reported in the cerebella of SMA patients. In this study, we assessed SMA pathology in the cerebellum using structural and diffusion magnetic resonance imaging, immunohistochemistry, and electrophysiology with the SMNΔ7 mouse model. We found a significant disproportionate loss in cerebellar volume, decrease in afferent cerebellar tracts, selective lobule-specific degeneration of Purkinje cells, abnormal lobule foliation and astrocyte integrity, and a decrease in spontaneous firing of cerebellar output neurons in the SMA mice compared to controls. Our data suggest that defects in cerebellar structure and function due to decreased survival motor neuron (SMN) levels impair the functional cerebellar output affecting motor control, and that cerebellar pathology should be addressed to achieve comprehensive treatment and therapy for SMA patients.


Assuntos
Astrócitos , Atrofia Muscular Espinal , Camundongos , Animais , Astrócitos/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Neurônios Motores/patologia , Cerebelo/patologia , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor/genética
5.
Brain Behav Evol ; 98(4): 194-209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36972574

RESUMO

The human brain is composed of a complex web of pathways. Diffusion magnetic resonance (MR) tractography is a neuroimaging technique that relies on the principle of diffusion to reconstruct brain pathways. Its tractography is broadly applicable to a range of problems as it is amenable for study in individuals of any age and from any species. However, it is well known that this technique can generate biologically implausible pathways, especially in regions of the brain where multiple fibers cross. This review highlights potential misconnections in two cortico-cortical association pathways with a focus on the aslant tract and inferior frontal occipital fasciculus. The lack of alternative methods to validate observations from diffusion MR tractography means there is a need to develop new integrative approaches to trace human brain pathways. This review discusses integrative approaches in neuroimaging, anatomical, and transcriptional variation as having much potential to trace the evolution of human brain pathways.


Assuntos
Encéfalo , Neuroimagem , Humanos , Animais , Vias Neurais , Mapeamento Encefálico/métodos
6.
Prog Brain Res ; 275: 165-215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36841568

RESUMO

This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Animais , Doenças Neurodegenerativas/patologia , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Genômica , Mamíferos
7.
J Neurosci ; 42(18): 3749-3767, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332086

RESUMO

The neural circuits that support human cognition are a topic of enduring interest. Yet, there are limited tools available to map brain circuits in the human and nonhuman primate brain. We harnessed high-resolution diffusion MR tractography, anatomic, and transcriptomic data from individuals of either sex to investigate the evolution and development of frontal cortex circuitry. We applied machine learning to RNA sequencing data to find corresponding ages between humans and macaques and to compare the development of circuits across species. We transcriptionally defined neural circuits by testing for associations between gene expression and white matter maturation. We then considered transcriptional and structural growth to test whether frontal cortex circuit maturation is unusually extended in humans relative to other species. We also considered gene expression and high-resolution diffusion MR tractography of adult brains to test for cross-species variation in frontal cortex circuits. We found that frontal cortex circuitry development is extended in primates, and concomitant with an expansion in corticocortical pathways compared with mice in adulthood. Importantly, we found that these parameters varied relatively little across humans and studied primates. These data identify a surprising collection of conserved features in frontal cortex circuits across humans and Old World monkeys. Our work demonstrates that integrating transcriptional and structural data across temporal dimensions is a robust approach to trace the evolution of brain pathways in primates.SIGNIFICANCE STATEMENT Diffusion MR tractography is an exciting method to explore pathways, but there are uncertainties in the accuracy of reconstructed tracts. We broaden the repertoire of toolkits to enhance our ability to trace human brain pathways from diffusion MR tractography. Our integrative approach finds corresponding ages across species and transcriptionally defines neural circuits. We used this information to test for variation in circuit maturation across species and found a surprising constellation of similar features in frontal cortex neural circuits across humans and primates. Integrating across scales of biological organization expands the repertoire of tools available to study pathways in primates, which opens new avenues to study pathways in health and diseases of the human brain.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Adulto , Animais , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Camundongos , Vias Neurais , Primatas , Substância Branca/diagnóstico por imagem
8.
Nat Commun ; 12(1): 6746, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799581

RESUMO

DNA replication follows a strict spatiotemporal program that intersects with chromatin structure but has a poorly understood genetic basis. To systematically identify genetic regulators of replication timing, we exploited inter-individual variation in human pluripotent stem cells from 349 individuals. We show that the human genome's replication program is broadly encoded in DNA and identify 1,617 cis-acting replication timing quantitative trait loci (rtQTLs) - sequence determinants of replication initiation. rtQTLs function individually, or in combinations of proximal and distal regulators, and are enriched at sites of histone H3 trimethylation of lysines 4, 9, and 36 together with histone hyperacetylation. H3 trimethylation marks are individually repressive yet synergistically associate with early replication. We identify pluripotency-related transcription factors and boundary elements as positive and negative regulators of replication timing, respectively. Taken together, human replication timing is controlled by a multi-layered mechanism with dozens of effectors working combinatorially and following principles analogous to transcription regulation.


Assuntos
Período de Replicação do DNA , Genoma Humano , Células-Tronco Pluripotentes/metabolismo , Acetilação , Variação Biológica da População/genética , Metilação de DNA , Conjuntos de Dados como Assunto , Feminino , Regulação da Expressão Gênica , Código das Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Locos de Características Quantitativas , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
9.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502267

RESUMO

Plasticity, and in particular, neurogenesis, is a promising target to treat and prevent a wide variety of diseases (e.g., epilepsy, stroke, dementia). There are different types of plasticity, which vary with age, brain region, and species. These observations stress the importance of defining plasticity along temporal and spatial dimensions. We review recent studies focused on brain plasticity across the lifespan and in different species. One main theme to emerge from this work is that plasticity declines with age but that we have yet to map these different forms of plasticity across species. As part of this effort, we discuss our recent progress aimed to identify corresponding ages across species, and how this information can be used to map temporal variation in plasticity from model systems to humans.


Assuntos
Encéfalo , Plasticidade Neuronal , Fatores Etários , Animais , Encéfalo/metabolismo , Proteínas do Domínio Duplacortina , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Animais , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ácidos Siálicos/metabolismo
10.
Proc Biol Sci ; 288(1944): 20202987, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33563125

RESUMO

How the unique capacities of human cognition arose in evolution is a question of enduring interest. It is still unclear which developmental programmes are responsible for the emergence of the human brain. The inability to determine corresponding ages between humans and apes has hampered progress in detecting developmental programmes leading to the emergence of the human brain. I harness temporal variation in anatomical, behavioural and transcriptional variation to determine corresponding ages from fetal to postnatal development and ageing, between humans and chimpanzees. This multi-dimensional approach results in 137 corresponding time points across the lifespan, from embryonic day 44 to approximately 55 years of age, in humans and their equivalent ages in chimpanzees. I used these data to test whether developmental programmes, such as the timeline of prefrontal cortex (PFC) maturation, previously claimed to differ between humans and chimpanzees, do so once variation in developmental schedules is controlled for. I compared the maturation of frontal cortex projections from structural magnetic resonance (MR) scans and from temporal variation in the expression of genes used to track long-range projecting neurons (i.e. supragranular-enriched genes) in chimpanzees and humans. Contrary to what has been suggested, the timetable of PFC maturation is not unusually extended in humans. This dataset, which is the largest with which to determine corresponding ages across humans and chimpanzees, provides a rigorous approach to control for variation in developmental schedules and to identify developmental programmes responsible for unique features of the human brain.


Assuntos
Longevidade , Pan troglodytes , Animais , Encéfalo , Humanos , Pan troglodytes/genética , Córtex Pré-Frontal , Transcriptoma
11.
Cereb Cortex ; 30(11): 5654-5666, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32537628

RESUMO

The human frontal cortex is unusually large compared with many other species. The expansion of the human frontal cortex is accompanied by both connectivity and transcriptional changes. Yet, the developmental origins generating variation in frontal cortex circuitry across species remain unresolved. Nineteen genes that encode filaments, synapse, and voltage-gated channels are especially enriched in the supragranular layers of the human cerebral cortex, which suggests enhanced corticocortical projections emerging from layer III. We identify species differences in connections with the use of diffusion MR tractography as well as gene expression in adulthood and in development to identify developmental mechanisms generating variation in frontal cortical circuitry. We demonstrate that increased expression of supragranular-enriched genes in frontal cortex layer III is concomitant with an expansion in corticocortical pathways projecting within the frontal cortex in humans relative to mice. We also demonstrate that the growth of the frontal cortex white matter and transcriptional profiles of supragranular-enriched genes are protracted in humans relative to mice. The expansion of projections emerging from the human frontal cortex arises by extending frontal cortical circuitry development. Integrating gene expression with neuroimaging level phenotypes is an effective strategy to assess deviations in developmental programs leading to species differences in connections.


Assuntos
Lobo Frontal/anatomia & histologia , Lobo Frontal/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Animais , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Camundongos , Especificidade da Espécie , Transcriptoma
12.
Dev Dyn ; 249(9): 1047-1061, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32562584

RESUMO

The brain is composed of a complex web of networks but we have yet to map the structural connections of the human brain in detail. Diffusion MR imaging is a high-throughput method that relies on the principle of diffusion to reconstruct tracts (ie, pathways) across the brain. Although diffusion MR tractography is an exciting method to explore the structural connectivity of the brain in development and across species, the tractography has at times led to questionable interpretations. There are at present few if any alternative methods to trace structural pathways in the human brain. Given these limitations and the potential of diffusion MR imaging to map the human connectome, it is imperative that we develop new approaches to validate neuroimaging techniques. I discuss our recent studies integrating neuroimaging with transcriptional and anatomical variation across humans and other species over the course of development and in adulthood. Developing a novel framework to harness the potential of diffusion MR tractography provides new and exciting opportunities to study the evolution of developmental mechanisms generating variation in connections and bridge the gap between model systems to humans.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Imagem de Tensor de Difusão , Vias Neurais/diagnóstico por imagem , Humanos
13.
Cereb Cortex ; 30(3): 1447-1464, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31667494

RESUMO

Diffusion magnetic resonance (MR) tractography represents a novel opportunity to investigate conserved and deviant developmental programs between humans and other species such as mice. To that end, we acquired high angular resolution diffusion MR scans of mice [embryonic day (E) 10.5 to postnatal week 4] and human brains [gestational week (GW) 17-30] at successive stages of fetal development to investigate potential evolutionary changes in radial organization and emerging pathways between humans and mice. We compare radial glial development as well as commissural development (e.g., corpus callosum), primarily because our findings can be integrated with previous work. We also compare corpus callosal growth trajectories across primates (i.e., humans and rhesus macaques) and rodents (i.e., mice). One major finding is that the developing cortex of humans is predominated by pathways likely associated with a radial glial organization at GW 17-20, which is not as evident in age-matched mice (E 16.5, 17.5). Another finding is that, early in development, the corpus callosum follows a similar developmental timetable in primates (i.e., macaques and humans) as in mice. However, the corpus callosum grows for an extended period of time in primates compared with rodents. Taken together, these findings highlight deviant developmental programs underlying the emergence of cortical pathways in the human brain.


Assuntos
Córtex Cerebral/fisiologia , Corpo Caloso/fisiologia , Desenvolvimento Fetal/fisiologia , Vias Neurais/fisiologia , Animais , Córtex Cerebral/embriologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Idade Gestacional , Humanos , Macaca mulatta , Camundongos , Vias Neurais/embriologia
14.
Cereb Cortex ; 29(12): 5150-5165, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30927350

RESUMO

Diffusion MR tractography permits investigating the 3D structure of cortical pathways as interwoven paths across the entire brain. We use high-resolution scans from diffusion spectrum imaging and high angular resolution diffusion imaging to investigate the evolution of cortical pathways within the euarchontoglire (i.e., primates, rodents) lineage. More specifically, we compare cortical fiber pathways between macaques (Macaca mulatta), marmosets (Callithrix jachus), and rodents (mice, Mus musculus). We integrate these observations with comparative analyses of Neurofilament heavy polypeptide (NEFH) expression across the cortex of mice and primates. We chose these species because their phylogenetic position serves to trace the early evolutionary history of the human brain. Our comparative analysis from diffusion MR tractography, cortical white matter scaling, and NEFH expression demonstrates that the examined primates deviate from mice in possessing increased long-range cross-cortical projections, many of which course across the anterior to posterior axis of the cortex. Our study shows that integrating gene expression data with diffusion MR data is an effective approach in identifying variation in connectivity patterns between species. The expansion of corticocortical pathways and increased anterior to posterior cortical integration can be traced back to an extension of neurogenetic schedules during development in primates.


Assuntos
Evolução Biológica , Córtex Cerebral/citologia , Conectoma , Vias Neurais/citologia , Animais , Callithrix , Imagem de Tensor de Difusão , Humanos , Macaca mulatta , Camundongos , Proteínas de Neurofilamentos/análise , Especificidade da Espécie
16.
Front Neurosci ; 12: 706, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30344473

RESUMO

Comparison of neurodevelopmental sequences between species whose initial period of brain organization may vary from 100 days to 1,000 days, and whose progress is intrinsically non-linear presents large challenges in normalization. Comparing adult timelines when lifespans stretch from 1 year to 75 years, when underlying cellular mechanisms under scrutiny do not scale similarly, presents challenges to simple detection and comparison. The question of adult hippocampal neurogenesis has generated numerous controversies regarding its simple presence or absence in humans versus rodents, whether it is best described as the tail of a distribution centered on early neural development, or is several distinct processes. In addition, adult neurogenesis may have substantially changed in evolutionary time in different taxonomic groups. Here, we extend and adapt a model of the cross-species transformation of early neurodevelopmental events which presently reaches up to the equivalent of the third human postnatal year for 18 mammalian species (www.translatingtime.net) to address questions relevant to hippocampal neurogenesis, which permit extending the database to adolescence or perhaps to the whole lifespan. We acquired quantitative data delimiting the envelope of hippocampal neurogenesis from cell cycle markers (i.e., Ki67 and DCX) and RNA sequencing data for two primates (macaque and humans) and two rodents (rat and mouse). To improve species coverage in primates, we gathered the same data from marmosets (Callithrix jacchus), but additionally gathered data on a number of developmental milestones to find equivalent developmental time points between marmosets and other species. When all species are so modeled, and represented in a common time frame, the envelopes of hippocampal neurogenesis are essentially superimposable. Early developmental events involving the olfactory and limbic system start and conclude possibly slightly early in primates than rodents, and we find a comparable early conclusion of primate hippocampal neurogenesis (as assessed by the relative number of Ki67 cells) suggesting a plateau to low levels at approximately 2 years of age in humans. Marmosets show equivalent patterns within neurodevelopment, but unlike macaque and humans may have wholesale delay in the initiation of neurodevelopment processes previously observed in some precocial mammals such as the guinea pig and multiple large ungulates.

17.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855363

RESUMO

The cortex of primates is relatively expanded compared with many other mammals, yet little is known about what developmental processes account for the expansion of cortical subtype numbers in primates, including humans. We asked whether GABAergic and pyramidal neuron production occurs for longer than expected in primates than in mice in a sample of 86 developing primate and rodent brains. We use high-resolution structural, diffusion MR scans and histological material to compare the timing of the ganglionic eminences (GE) and cortical proliferative pool (CPP) maturation between humans, macaques, rats, and mice. We also compare the timing of post-neurogenetic maturation of GABAergic and pyramidal neurons in primates (i.e. humans, macaques) relative to rats and mice to identify whether delays in neurogenesis are concomitant with delayed post-neurogenetic maturation. We found that the growth of the GE and CPP are both selectively delayed compared with other events in primates. By contrast, the timing of post-neurogenetic GABAergic and pyramidal events (e.g. synaptogenesis) are predictable from the timing of other events in primates and in studied rodents. The extended duration of GABAergic and pyramidal neuron production is associated with the amplification of GABAerigc and pyramidal neuron numbers in the human and non-human primate cortex.


Assuntos
Coevolução Biológica , Neurônios GABAérgicos/citologia , Neurogênese , Células Piramidais/citologia , Animais , Encéfalo/citologia , Humanos , Macaca/fisiologia , Camundongos , Ratos
18.
J Comp Neurol ; 525(5): 1075-1093, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27615357

RESUMO

The isocortex of primates is disproportionately expanded relative to many other mammals, yet little is known about what the expansion of the isocortex entails for differences in cellular composition and connectivity patterns in primates. Across the depth of the isocortex, neurons exhibit stereotypical patterns of projections. Upper-layer neurons (i.e., layers II-IV) project within and across cortical areas, whereas many lower-layer pyramidal neurons (i.e., layers V-VI) favor connections to subcortical regions. To identify evolutionary changes in connectivity patterns, we quantified upper (i.e., layers II-IV)- and lower (i.e., layers V-VI)-layer neuron numbers in primates and other mammals such as rodents and carnivores. We also used MR tractography based on high-angular resolution diffusion imaging and diffusion spectrum imaging to compare anterior-to-posterior corticocortical tracts between primates and other mammals. We found that primates possess disproportionately more upper-layer neurons as well as an expansion of anterior-to-posterior corticocortical tracts compared with other mammals. Taken together, these findings demonstrate that primates deviate from other mammals in exhibiting increased cross-cortical connectivity. J. Comp. Neurol. 525:1075-1093, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Neocórtex/anatomia & histologia , Vias Neurais/anatomia & histologia , Animais , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Primatas
19.
J Comp Neurol ; 525(8): 1811-1826, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28001295

RESUMO

Although it has been claimed that marsupials possess a lower density of isocortical neurons compared with other mammals, little is known about cross-cortical variation in neuron distributions in this diverse taxonomic group. We quantified upper-layer (layers II-IV) and lower-layer (layers V-VI) neuron numbers per unit of cortical surface area in three diprotodont marsupial species (two macropodiformes, the red kangaroo and the parma wallaby, and a vombatiform, the koala) and compared these results to eutherian mammals (e.g., xenarthrans, rodents, primates). In contrast to the notion that the marsupial isocortex contains a low density of neurons, we found that neuron numbers per unit of cortical surface area in several marsupial species overlap with those found in eutherian mammals. Furthermore, neuron numbers vary systematically across the isocortex of the marsupial mammals examined. Neuron numbers under a unit of cortical surface area are low toward the frontal cortex and high toward the caudo-medial (occipital) pole. Upper-layer neurons (i.e., layers II-IV) account for most of the variation in neuron numbers across the isocortex. The variation in neuron numbers across the rostral to the caudal pole resembles primates. These findings suggest that diprotodont marsupials and eutherian mammals share a similar cortical architecture despite their distant evolutionary divergence.


Assuntos
Mamíferos/anatomia & histologia , Marsupiais/anatomia & histologia , Neocórtex/anatomia & histologia , Animais , Imageamento Tridimensional , Especificidade da Espécie
20.
J Comp Neurol ; 524(4): 772-82, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26223206

RESUMO

The isocortex of several primates and rodents shows a systematic increase in the number of neurons per unit of cortical surface area from its rostrolateral to caudomedial border. The steepness of the gradient in neuronal number and density is positively correlated with cortical volume. The relative duration of neurogenesis along the same rostrocaudal gradient predicts a substantial fraction of this variation in neuron number and laminar position, which is produced principally from layers II-IV neurons. However, virtually all of our quantitative knowledge about total and laminar variation in cortical neuron numbers and neurogenesis comes from rodents and primates, leaving whole taxonomic groups and many intermediate-sized brains unexplored. Thus, the ubiquity in mammals of the covariation of longer cortical neurogenesis and increased cortical neuron number deriving from cortical layers II-IV is undetermined. To begin to address this gap, we examined the isocortex of the manatee using the optical disector method in sectioned tissue, and also assembled partial data from published reports of the domestic cat brain. The manatee isocortex has relatively fewer neurons per total volume, and fewer II-IV neurons than primates with equivalently sized brains. The gradient in number of neurons from the rostral to the caudal pole is intermediate between primates and rodents, and, like those species, is observed only in the upper cortical layers. The cat isocortex (Felis domesticus) shows a similar structure. Key species for further tests of the origin, ubiquity, and significance of this organizational feature are discussed.


Assuntos
Evolução Biológica , Neocórtex/citologia , Trichechus manatus/anatomia & histologia , Animais , Neurônios/citologia , Tamanho do Órgão , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...