Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166787, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37302428

RESUMO

Most cases of Parkinson's disease (PD) are idiopathic, with unknown aetiology and genetic background. However, approximately 10 % of cases are caused by defined genetic mutations, among which mutations in the parkin gene are the most common. There is increasing evidence of the involvement of mitochondrial dysfunction in the development of both idiopathic and genetic PD. However, the data on mitochondrial changes reported by different studies are inconsistent, which can reflect the variability in genetic background of the disease. Mitochondria, as a plastic and dynamic organelles, are the first place in the cell to respond to external and internal stress. In this work, we characterized mitochondrial function and dynamics (network morphology and turnover regulation) in primary fibroblasts from PD patients with parkin mutations. We performed clustering analysis of the obtained data to compare the profiles of mitochondrial parameters in PD patients and healthy donors. This allowed to extract the features characteristic for PD patients fibroblasts, which were a smaller and less complex mitochondrial network and decreased levels of mitochondrial biogenesis regulators and mitophagy mediators. The approach we used allowed a comprehensive characteristics of elements common for mitochondrial dynamics remodelling accompanying pathogenic mutation. This may be helpful in the deciphering key pathomechanisms of the PD disease.


Assuntos
Doença de Parkinson , Humanos , Biomarcadores/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Doença de Parkinson/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
iScience ; 26(4): 106543, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123244

RESUMO

Chronic myeloid leukemia (CML) cells circulate between blood and bone marrow niche, representing different microenvironments. We studied the role of the two RNA-binding proteins, T-cell-restricted intracellular antigen (TIAR), and the fragile X mental retardation protein (FMRP) in the regulation of protein translation in CML cells residing in settings mimicking peripheral blood microenvironment (PBM) and bone marrow microenvironment (BMM). The outcomes showed how conditions shaped the translation process through TIAR and FMRP activity, considering its relevance in therapy resistance. The QuaNCAT mass-spectrometric approach revealed that TIAR and FMRP have a discrete modulatory effect on protein synthesis and thus affect distinct aspects of leukemic cells functioning in the hypoxic niche. In the BMM setup, FMRP impacted metabolic adaptation of cells and TIAR substantially supported the resistance of CML cells to translation inhibition by homoharringtonine. Overall, our results demonstrated that targeting post-transcriptional control should be considered when designing anti-leukemia therapeutic solutions.

3.
Cell Mol Biol Lett ; 27(1): 109, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482296

RESUMO

The hypoxia-inducible factors (HIF) are transcription factors that activate the adaptive hypoxic response when oxygen levels are low. The HIF transcriptional program increases oxygen delivery by inducing angiogenesis and by promoting metabolic reprograming that favors glycolysis. The two major HIFs, HIF-1 and HIF-2, mediate this response during prolonged hypoxia in an overlapping and sequential fashion that is referred to as the HIF switch. Both HIF proteins consist of an unstable alpha chain and a stable beta chain. The instability of the alpha chains is mediated by prolyl hydroxylase (PHD) activity during normoxic conditions, which leads to ubiquitination and proteasomal degradation of the alpha chains. During normoxic conditions, very little HIF-1 or HIF-2 alpha-beta dimers are present because of PHD activity. During hypoxia, however, PHD activity is suppressed, and HIF dimers are stable. Here we demonstrate that HIF-1 expression is maximal after 4 h of hypoxia in primary endothelial cells and then is dramatically reduced by 8 h. In contrast, HIF-2 is maximal at 8 h and remains elevated up to 24 h. There are differences in the HIF-1 and HIF-2 transcriptional profiles, and therefore understanding how the transition between them occurs is important and not clearly understood. Here we demonstrate that the HIF-1 to HIF-2 transition during prolonged hypoxia is mediated by two mechanisms: (1) the HIF-1 driven increase in the glycolytic pathways that reactivates PHD activity and (2) the much less stable mRNA levels of HIF-1α (HIF1A) compared to HIF-2α (EPAS1) mRNA. We also demonstrate that the alpha mRNA levels directly correlate to the relative alpha protein levels, and therefore to the more stable HIF-2 expression during prolonged hypoxia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Hipóxia Celular , Células Endoteliais , Subunidade alfa do Fator 1 Induzível por Hipóxia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigênio , Estabilidade de RNA , RNA Mensageiro/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
4.
Exp Neurol ; 354: 114098, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35504345

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) consist of core proteins and glycosaminoglycan side chains. Tenascins, and hyaluronan and proteoglycan link protein 1 (HAPLN), link CSPGs with a hyaluronan backbone to constitute perineuronal nets (PNNs), which ensheath preferentially highly active neurons to maintain architecture and stabilize synapses, but restrict repair plasticity. Spinal cord injury increases CSPG core protein levels in the lesion proximity, limiting permissiveness of the extracellular milieu for fiber regrowth, however regulation of PNNs structure in the vicinity of distant α-motoneurons (MNs) in the course of degeneration and reorganization of their inputs requires research. Here, we examined early and late changes in CSPGs, HAPLN1, tenascin-R, and glial activation along the spinal cord in male rats with complete spinal cord transection (Th10), and their impact on PNNs ensheathing lumbar MNs innervating ankle extensor and flexor muscles, which are in different loading states in paraplegic rats. We show that (1) distance from the lesion site and time after injury (2-5 weeks) differentiate degree of changes in transcription rates (measured with RT-qPCR) of PNNs proteins with increased CSPGs and decreased HAPLN1 transcripts, suggesting long-term PNN destabilization in majority of spinal segments, (2) in lumbar segments PNN composition is not MN-class (extensor vs flexor) specific, both showing early decrease and late upregulation of Wisteria floribunda agglutinin (WFA) labeling in vicinity of synaptic boutons on MNs, (3) long-term locomotor training tends to reduce WFA(+) PNNs, but not their protein components (immunofluorescence measurements) around MNs. Our results suggest that training-induced regulation may target glycan structures of CSPGs.


Assuntos
Ácido Hialurônico , Terminações Pré-Sinápticas , Animais , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Ácido Hialurônico/metabolismo , Masculino , Neurônios Motores/metabolismo , Lectinas de Plantas , Terminações Pré-Sinápticas/metabolismo , Ratos , Receptores de N-Acetilglucosamina/metabolismo
5.
Cell Signal ; 90: 110209, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34890779

RESUMO

We analyzed the effects of selective knockdown of either HIF-1α or HIF-2α on the transcriptional response to hypoxia of human umbilical endothelial cells at two time-points (2 h and 8 h) of hypoxia. We focused on 13 previously identified hypoxia-responsive genes, pre-selected to have different activation kinetics and different proportions of HRE motifs annotated to either HIF-1 or HIF-2 in open promoters - open chromatin DNase-hypersensitive sites (DHS) regions within ±1 kb of the gene start. We report that genes activated by both HIF-1 and 2 tend to be activated earlier than genes activated by HIF-1 only, which, in turn, tend to be activated earlier than genes activated by HIF-2 only. Moreover, for the 13 analyzed genes, we found that the effect of silencing HIF1A on the gene induction by hypoxia is greater for the genes with more HRE motifs annotated to HIF-1 in their promoter open chromatin DHS regions within ±1 kb and also within ±10 kb of the gene start. We corroborated and extended this finding by showing that among 232 genes previously identified as activated by hypoxia, the genes with ChIP-seq peak(s) for HIF-1α within a ±10 kb flank of the gene start contain more HRE motifs annotated to HIF-1 in the DHS regions within this flank than the genes with no ChIP-seq peaks. Also in the whole genome, the DHS regions intersecting ChIP-seq peaks for HIF-1α contain more HRE motifs annotated to HIF-1 than the DHS regions not intersecting the ChIP-seq peaks. This suggests a mechanism, by which higher promoter content of HRE motifs in DHS regions increases HIF-1 binding, which in turn increases gene induction by hypoxia.


Assuntos
Células Endoteliais , Genoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/genética , Células Endoteliais/metabolismo , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Regiões Promotoras Genéticas/genética , Elementos de Resposta
6.
J Clin Med ; 10(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065573

RESUMO

Numerous papers have reported altered expression patterns of Ras and/or ShcA proteins in different types of cancers. Their level can be potentially associated with oncogenic processes. We analyzed samples of pediatric brain tumors reflecting different groups such as choroid plexus tumors, diffuse astrocytic and oligodendroglial tumors, embryonal tumors, ependymal tumors, and other astrocytic tumors as well as tumor malignancy grade, in order to characterize the expression profile of Ras, TrkB, and three isoforms of ShcA, namely, p66Shc, p52Shc, and p46Shc proteins. The main aim of our study was to evaluate the potential correlation between the type of pediatric brain tumors, tumor malignancy grade, and the expression patterns of the investigated proteins.

7.
Genes (Basel) ; 10(11)2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683705

RESUMO

: The Drosophilagrainyhead (grh) and vertebrate Grainyhead-like (Grhl) transcription factors are among the most critical genes for epithelial development, maintenance and homeostasis, and are remarkably well conserved from fungi to humans. Mutations affecting grh/Grhl function lead to a myriad of developmental and adult onset epithelial disease, such as aberrant skin barrier formation, facial/palatal clefting, impaired neural tube closure, age-related hearing loss, ectodermal dysplasia, and importantly, cancers of epithelial origin. Recently, mutations in the family member GRHL3 have been shown to lead to both syndromic and non-syndromic facial and palatal clefting in humans, particularly the genetic disorder Van Der Woude Syndrome (VWS), as well as spina bifida, whereas mutations in mammalian Grhl2 lead to exencephaly and facial clefting. As transcription factors, Grhl proteins bind to and activate (or repress) a substantial number of target genes that regulate and drive a cascade of transcriptional networks. A multitude of large-scale datasets have been generated to explore the grh/Grhl-dependent transcriptome, following ablation or mis-regulation of grh/Grhl-function. Here, we have performed a meta-analysis of all 41 currently published grh and Grhl RNA-SEQ, and microarray datasets, in order to identify and characterise the transcriptional networks controlled by grh/Grhl genes across disparate biological contexts. Moreover, we have also cross-referenced our results with published ChIP and ChIP-SEQ datasets, in order to determine which of the critical effector genes are likely to be direct grh/Grhl targets, based on genomic occupancy by grh/Grhl genes. Lastly, to interrogate the predictive strength of our approach, we experimentally validated the expression of the top 10 candidate grhl target genes in epithelial development, in a zebrafish model lacking grhl3, and found that orthologues of seven of these (cldn23,ppl, prom2, ocln, slc6a19, aldh1a3, and sod3) were significantly down-regulated at 48 hours post-fertilisation. Therefore, our study provides a strong predictive resource for the identification of putative grh/grhl effector target genes.


Assuntos
Sequência Conservada , Evolução Molecular , Redes Reguladoras de Genes , Proteínas Repressoras/metabolismo , Transcriptoma , Anormalidades Múltiplas/genética , Animais , Fenda Labial/genética , Fissura Palatina/genética , Cistos/genética , Regulação para Baixo , Drosophila , Ontologia Genética , Genômica/métodos , Humanos , Lábio/anormalidades , Proteínas Repressoras/genética , Peixe-Zebra
8.
Cells ; 8(12)2019 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771226

RESUMO

It is acknowledged that cancer cells are able to undergo senescence in response to clinically used chemotherapeutics. Moreover, recent years have provided evidence that some drugs can selectively remove senescent cells. Therefore, it is essential to properly identify and characterize senescent cells, especially when it comes to cancer. Senescence was induced in various cancer cell lines (A549, SH-SY-5Y, HCT116, MDA-MB-231, and MCF-7) following treatment with doxorubicin, irinotecan, methotrexate, 5-fluorouracil, oxaliplatin, or paclitaxel. Treatment with tested chemotherapeutics resulted in upregulation of p21 and proliferation arrest without cytotoxicity. A comparative analysis with the use of common senescence markers (i.e., morphology, SA-ß-galactosidase, granularity, secretory phenotype, and the level of double-stranded DNA damage) revealed a large diversity in response to the chemotherapeutics used. The strongest senescence inducers were doxorubicin, irinotecan, and methotrexate; paclitaxel had an intermediate effect and oxaliplatin and 5-fluorouracil did not induce senescence. In addition, different susceptibility of cancer cells to senescence was observed. A statistical analysis aimed at finding any relationship between the senescence markers applied did not show clear correlations. Moreover, increased SA-ß-gal activity coupled with p21 expression proved not to be an unequivocal senescence marker. This points to a need to simultaneously analyze multiple markers, given their individual limitations.


Assuntos
Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Doxorrubicina/farmacologia , Fluoruracila/farmacologia , Humanos , Irinotecano/farmacologia , Metotrexato/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Oxaliplatina/farmacologia , Paclitaxel/farmacologia , Fenótipo , Células Tumorais Cultivadas
9.
ACS Chem Neurosci ; 10(11): 4449-4461, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31556991

RESUMO

Molecular synaptic aging perturbs neurotransmission and decreases the potential for neuroplasticity. The direction and degree of changes observed in aging are often region or cell specific, hampering the generalization of age-related effects. Using real-time PCR and Western blot analyses, we investigated age-related changes in several presynaptic markers (Vglut1, Vglut2, Gad65, Gad67, Vgat, synaptophysin) involved in the initial steps of glutamatergic and GABAergic neurotransmission, in several cortical regions, in young (3-4 months old), middle-aged (1 year old), and old (2 years old) mice. We found age-related changes mainly in protein levels while, apart from the occipital cortex, virtually no significant changes in mRNA levels were detected, which suggests that aging acts on the investigated markers mainly through post-transcriptional mechanisms depending on the brain region. Principal component analysis (PCA) of protein data revealed that each brain region possessed a type of "biochemical distinctiveness" (each analyzed brain region was best characterized by higher variability level of a particular synaptic marker) that was lost with age. Analysis of glutamate and γ-aminobutyric acid (GABA) levels in aging suggested that mechanisms keeping an overall balance between the two amino acids in the brain are weakened in the hippocampus. Our results unravel the differences in mRNA/protein interactions in the aging brain.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Western Blotting/métodos , Química Encefálica , Feminino , Ácido Glutâmico/análise , Camundongos , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/química , Análise de Componente Principal/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Ácido gama-Aminobutírico/análise
10.
FASEB J ; 33(3): 4388-4403, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30550341

RESUMO

Bioenergetic failure, oxidative stress, and changes in mitochondrial morphology are common pathologic hallmarks of amyotrophic lateral sclerosis (ALS) in several cellular and animal models. Disturbed mitochondrial physiology has serious consequences for proper functioning of the cell, leading to the chronic mitochondrial stress. Mitochondria, being in the center of cellular metabolism, play a pivotal role in adaptation to stress conditions. We found that mitochondrial dysfunction and adaptation processes differ in primary fibroblasts derived from patients diagnosed with either sporadic or familial forms of ALS. The evaluation of mitochondrial parameters such as the mitochondrial membrane potential, the oxygen consumption rate, the activity and levels of respiratory chain complexes, and the levels of ATP, reactive oxygen species, and Ca2+ show that the bioenergetic properties of mitochondria are different in sporadic ALS, familial ALS, and control groups. Comparative statistical analysis of the data set (with use of principal component analysis and support vector machine) identifies and distinguishes 3 separate groups despite the small number of investigated cell lines and high variability in measured parameters. These findings could be a first step in development of a new tool for predicting sporadic and familial forms of ALS and could contribute to knowledge of its pathophysiology.-Walczak, J., Debska-Vielhaber, G., Vielhaber, S., Szymanski, J., Charzynska, A., Duszynski, J., Szczepanowska, J. Distinction of sporadic and familial forms of ALS based on mitochondrial characteristics.


Assuntos
Esclerose Lateral Amiotrófica/classificação , Heterogeneidade Genética , Mitocôndrias/fisiologia , Trifosfato de Adenosina/biossíntese , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Autofagia/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Feminino , Fibroblastos/ultraestrutura , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Cultura Primária de Células , Análise de Componente Principal , Espécies Reativas de Oxigênio/metabolismo , Máquina de Vetores de Suporte
11.
BMC Genomics ; 18(1): 850, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115927

RESUMO

BACKGROUND: A vast amount of microarray data on transcriptomic response to injury has been collected so far. We designed the analysis in order to identify the genes displaying significant changes in expression after wounding in different organisms and tissues. This meta-analysis is the first study to compare gene expression profiles in response to wounding in as different tissues as heart, liver, skin, bones, and spinal cord, and species, including rat, mouse and human. RESULTS: We collected available microarray transcriptomic profiles obtained from different tissue injury experiments and selected the genes showing a minimum twofold change in expression in response to wounding in prevailing number of experiments for each of five wound healing stages we distinguished: haemostasis & early inflammation, inflammation, early repair, late repair and remodelling. During the initial phases after wounding, haemostasis & early inflammation and inflammation, the transcriptomic responses showed little consistency between different tissues and experiments. For the later phases, wound repair and remodelling, we identified a number of genes displaying similar transcriptional responses in all examined tissues. As revealed by ontological analyses, activation of certain pathways was rather specific for selected phases of wound healing, such as e.g. responses to vitamin D pronounced during inflammation. Conversely, we observed induction of genes encoding inflammatory agents and extracellular matrix proteins in all wound healing phases. Further, we selected several genes differentially upregulated throughout different stages of wound response, including established factors of wound healing in addition to those previously unreported  in this context such as PTPRC and AQP4. CONCLUSIONS: We found that transcriptomic responses to wounding showed similar traits in a diverse selection of tissues including skin, muscles, internal organs and nervous system. Notably, we distinguished transcriptional induction of inflammatory genes not only in the initial response to wounding, but also later, during wound repair and tissue remodelling.


Assuntos
Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Cicatrização/genética , Bases de Dados Genéticas , Ontologia Genética
12.
BMC Syst Biol ; 9: 47, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26275400

RESUMO

BACKGROUND: As suggested by the origin of the word, sphingolipids are mysterious molecules with various roles in antagonistic cellular processes such as autophagy, apoptosis, proliferation and differentiation. Moreover, sphingolipids have recently been recognized as important messengers in cellular signaling pathways. Notably, sphingolipid metabolism disorders have been observed in various pathological conditions such as cancer and neurodegeneration. RESULTS: The existing formal models of sphingolipid metabolism focus mainly on de novo ceramide synthesis or are limited to biochemical transformations of particular subspecies. Here, we propose the first comprehensive computational model of sphingolipid metabolism in human tissue. Contrary to the previous approaches, we use a model that reflects cell compartmentalization thereby highlighting the differences among individual organelles. CONCLUSIONS: The model that we present here was validated using recently proposed methods of model analysis, allowing to detect the most sensitive and experimentally non-identifiable parameters and determine the main sources of model variance. Moreover, we demonstrate the usefulness of our model in the study of molecular processes underlying Alzheimer's disease, which are associated with sphingolipid metabolism.


Assuntos
Simulação por Computador , Modelos Biológicos , Esfingolipídeos/metabolismo , Doença de Alzheimer/metabolismo , Biocatálise , Transporte Biológico , Membrana Celular/metabolismo , Homeostase , Humanos , Cinética , Fosforilação , Reprodutibilidade dos Testes , Esfingolipídeos/biossíntese
13.
Bioinformatics ; 30(1): 137-8, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24191070

RESUMO

MOTIVATION: Stochasticity is an indispensable aspect of biochemical processes at the cellular level. Studies on how the noise enters and propagates in biochemical systems provided us with non-trivial insights into the origins of stochasticity, in total, however, they constitute a patchwork of different theoretical analyses. RESULTS: Here we present a flexible and widely applicable noise decomposition tool that allows us to calculate contributions of individual reactions to the total variability of a system's output. With the package it is, therefore, possible to quantify how the noise enters and propagates in biochemical systems. We also demonstrate and exemplify using the JAK-STAT signalling pathway that the noise contributions resulting from individual reactions can be inferred from data experimental data along with Bayesian parameter inference. The method is based on the linear noise approximation, which is assumed to provide a reasonable representation of analyzed systems. AVAILABILITY AND IMPLEMENTATION: http://sourceforge.net/p/stochdecomp/


Assuntos
Fenômenos Bioquímicos , Software , Teorema de Bayes , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Processos Estocásticos
14.
JAKSTAT ; 2(3): e24672, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24069559

RESUMO

Despite a conceptually simple mechanism of signaling, the JAK-STAT pathway exhibits considerable behavioral complexity. Computational pathway models are tools to investigate in detail signaling process. They integrate well with experimental studies, helping to explain molecular dynamics and to state new hypotheses, most often about the structure of interactions. A relatively small amount of experimental data is available for a JAK1/2-STAT1 variant of the pathway, hence, only several computational models were developed. Here we review a dominant approach of kinetic modeling of the JAK1/2-STAT1 pathway, based on ordinary differential equations. We also give a brief overview of attempts to computationally infer topology of this pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...