Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
1.
Phys Chem Chem Phys ; 26(31): 20937-20946, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046301

RESUMO

The ultrafast dynamics of neutral copper oxide clusters (CunOx, n < 5) are reported using femtosecond pump probe spectroscopy in the gas phase. The transient spectra recorded for each cluster demonstrate they relax on a 100s of fs timescale followed by a long-lived (>50 ps) response. Density functional theory calculations are performed to determine the lowest energy structures and spin states. Topological descripters for the excited states are calculated (time-dependent density functional theory) to relate the measured excited state dynamics to changes in the cluster's electronic structure with increasing oxidation. Strong field ionization is demonstrated here to be a soft form of ionization and able to record transient signals for clusters previously determined to be unstable to nanosecond multiphoton ionization. The relative cluster stability is further demonstrated by signal enhancement/depreciation that is recorded through the synergy from the two laser pulses. Once the oxygen atoms exceed the number of copper atoms, a weakly bound superoxide O2 unit forms, exhibiting a higher spin state. All clusters that are not in the lowest spin configuration demonstrate fragmentation.

2.
Evolution ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995057

RESUMO

Mitonuclear coevolution is common in eukaryotes, but bivalve lineages that have doubly uniparental inheritance (DUI) of mitochondria may be an interesting example. In this system, females transmit mtDNA (F mtDNA) to all offspring, while males transmit a different mtDNA (M mtDNA) solely to their sons. Molecular evolution and functional data suggest oxidative phosphorylation (OXPHOS) genes encoded in M mtDNA evolve under relaxed selection due to their function being limited to sperm only (vs. all other tissues for F mtDNA). This has led to the hypothesis that mitonuclear coevolution is less important for M mtDNA. Here, we use comparative phylogenetics, transcriptomics, and proteomics to understand mitonuclear interactions in DUI bivalves. We found nuclear OXPHOS proteins coevolve and maintain compatibility similarly with both F and M mtDNA OXPHOS proteins. Mitochondrial recombination did not influence mitonuclear compatibility and nuclear-encoded OXPHOS genes were not upregulated in tissues with M mtDNA to offset dysfunction. Our results support that selection maintains mitonuclear compatibility with F and M mtDNA despite relaxed selection on M mtDNA. Strict sperm transmission, lower effective population size, and higher mutation rates may explain the evolution of M mtDNA. Our study highlights that mitonuclear coevolution and compatibility may be broad features of eukaryotes.

3.
Infant Behav Dev ; 76: 101976, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018930

RESUMO

BACKGROUND: Positive affect synchrony, or the reciprocal exchange of positive affect during free play, can scaffold infants' socioemotional development. However, parental stress may compromise the expression and exchange of positive affect within families. The current study assesses whether parenting stress and hair cortisol are associated with positive affect synchrony during a triadic play interaction. METHOD: Within 70 different-sex dyads consisting of first-time parents and their six-month-old infants who participated in a four-minute laboratory-based free-play task, facial affect of each member of the triad was observationally microcoded at the second-by-second level. Hair samples were collected from mothers and fathers for cortisol assay, and parents completed a self-report measure of parenting stress. RESULTS: Using dynamic structural equation modeling (DSEM), we found positive between-level and within-level affect synchrony across all family members, with one exception: infants' affect did not predict fathers' affect at the following timepoint. Mother-to-infant affect synchrony was greater in mothers with higher hair cortisol. Similarly, mothers with higher parenting stress tended to have greater infant-to-mother affect synchrony, and had infants that displayed less overall positive affect across the interaction. CONCLUSION: We found evidence for bidirectional, time-lagged synchrony in the momentary positive affect of mothers, fathers, and infants. Maternal hair cortisol concentration and parenting stress seem to increase affect synchrony between mothers and infants- suggesting that parental stress may correlate with greater affective attunement, but less overall positive affect in infants.

4.
Nanoscale ; 16(28): 13516-13524, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38946195

RESUMO

The excited state lifetimes of neutral (Al)n clusters up to ∼1 nm in diameter in size, where n ≤ 43, are systematically measured with femtosecond time-resolved mass spectrometry. The onset of metallic behavior is identified as a distinct change in the relaxation behavior initiated with single ultraviolet (400 nm) photon excitation. The experimentally measured excited state lifetimes gradually decrease with size for small molecular scale clusters (n < 10) before becoming indistinguishable for larger clusters (n > 9), where the measurements are comparable to electron-lattice relaxation time of bulk Al (∼300 fs). Particularly intense, or magic, Aln clusters do not exhibit any significant excited state lifetime behavior. Time-dependent density functional theory quantify the excited state properties and are presented to show that dynamics are strongly tied to the excited state charge carrier distributions and overlap, rather than detailed changes related to changes in the cluster's electronic and geometric structure. The consistency in excited state lifetimes for clusters larger than n = 9 is attributed to the hybridization of the s- and p-orbitals as well as increasing delocalization. Al3 exhibits unique temporal delay in its transient behavior that is attributed to a transition from triangular ground state to linear structure upon excitation.

5.
World Neurosurg ; 185: e387-e396, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350596

RESUMO

BACKGROUND: Spinal decompression and osteotomies are conventionally performed using high-speed drills (HSDs) and rongeurs. The ultrasonic bone scalpel (UBS) is a tissue-specific osteotome that preferentially cuts bone while sparing the surrounding soft tissues. There is ongoing investigation into its ability to optimize peri- and postoperative outcomes in spine surgery. The purpose of this study was to compare the intraoperative metrics and complications during a transition period from HSD to UBS. METHODS: A single-institution, single-surgeon retrospective analysis was conducted of patients undergoing spine surgery from January 2020 to December 2021. Statistical analyses were performed to detect associations between the surgical technique and outcomes of interest. A P value < 0.05 was considered statistically significant. RESULTS: A total of 193 patients met the inclusion criteria (HSD, n = 100; UBS, n = 93). Multivariate logistic regression revealed similar durotomy (P = 0.10), nerve injury (P = 0.20), and reoperation (P = 0.68) rates. Although the estimated blood loss (EBL) and length of stay were similar, the operative time was significantly longer with the UBS (192.81 vs. 204.72 minutes; P = 0.03). Each subsequent surgery using the UBS revealed a 3.1% decrease in the probability of nerve injury (P = 0.026) but had no significant effects on the operative time, EBL, or probability of durotomy or reoperation. CONCLUSIONS: The UBS achieves outcomes on par with conventional tools, with a trend toward a lower incidence of neurologic injury. The expected reductions in EBL and durotomy were not realized in our cohort, perhaps because of a high proportion of revision surgeries, although these might be dependent on surgeon familiarity, among other operative factors. Future prospective studies are needed to validate our results and further refine the optimal application of this device in spine surgery.


Assuntos
Osteotomia , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Osteotomia/métodos , Osteotomia/instrumentação , Idoso , Duração da Cirurgia , Adulto , Procedimentos Cirúrgicos Ultrassônicos/instrumentação , Procedimentos Cirúrgicos Ultrassônicos/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Descompressão Cirúrgica/métodos , Descompressão Cirúrgica/instrumentação , Instrumentos Cirúrgicos , Perda Sanguínea Cirúrgica
6.
Res Integr Peer Rev ; 9(1): 2, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360805

RESUMO

Journal editors have a large amount of power to advance open science in their respective fields by incentivising and mandating open policies and practices at their journals. The Data PASS Journal Editors Discussion Interface (JEDI, an online community for social science journal editors: www.dpjedi.org ) has collated several resources on embedding open science in journal editing ( www.dpjedi.org/resources ). However, it can be overwhelming as an editor new to open science practices to know where to start. For this reason, we created a guide for journal editors on how to get started with open science. The guide outlines steps that editors can take to implement open policies and practices within their journal, and goes through the what, why, how, and worries of each policy and practice. This manuscript introduces and summarizes the guide (full guide: https://doi.org/10.31219/osf.io/hstcx ).

7.
J Hered ; 115(1): 72-85, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38015800

RESUMO

Characterizing the mechanisms influencing the distribution of genetic variation in aquatic species can be difficult due to the dynamic nature of hydrological landscapes. In North America's Central Highlands, a complex history of glacial dynamics, long-term isolation, and secondary contact have shaped genetic variation in aquatic species. Although the effects of glacial history have been demonstrated in many taxa, responses are often lineage- or species-specific and driven by organismal ecology. In this study, we reconstruct the evolutionary history of a freshwater mussel species complex using a suite of mitochondrial and nuclear loci to resolve taxonomic and demographic uncertainties. Our findings do not support Pleurobema rubrum as a valid species, which is proposed for listing as threatened under the U.S. Endangered Species Act. We synonymize P. rubrum under Pleurobema sintoxia-a common and widespread species found throughout the Mississippi River Basin. Further investigation of patterns of genetic variation in P. sintoxia identified a complex demographic history, including ancestral vicariance and secondary contact, within the Eastern Highlands. We hypothesize these patterns were shaped by ancestral vicariance driven by the formation of Lake Green and subsequent secondary contact after the last glacial maximum. Our inference aligns with demographic histories observed in other aquatic taxa in the region and mirrors patterns of genetic variation of a freshwater fish species (Erimystax dissimilis) confirmed to serve as a parasitic larval host for P. sintoxia. Our findings directly link species ecology to observed patterns of genetic variation and may have significant implications for future conservation and recovery actions of freshwater mussels.


Assuntos
Bivalves , DNA Mitocondrial , Animais , DNA Mitocondrial/genética , Espécies em Perigo de Extinção , Bivalves/genética , Lagos , Demografia , Filogenia , Variação Genética
8.
J Neurosurg ; 140(2): 595-599, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37503914

RESUMO

Prior to the 1937 invention of the Raney clip, surgeons relied on hemostatic sutures, pneumatic tourniquets, sequentially applied hemostatic forceps, and the administration of local vasoconstrictive agents to achieve scalp hemostasis. The Raney clip is now the quintessential tool for achieving scalp hemostasis in cranial neurosurgery; with nearly 13.8 million cranial neurosurgical cases per year globally, Raney clips are in high demand and their use is ubiquitous. What is less known, however, is the story of their invention and the related stories of those who bear the Raney name. This paper fills these gaps in neurosurgical history, using information obtained during an extensive series of contemporary interviews and correspondence with the Raney family.


Assuntos
Hemostasia Cirúrgica , Hemostáticos , Humanos , Epônimos , Procedimentos Neurocirúrgicos , Instrumentos Cirúrgicos
9.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37935058

RESUMO

Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In certain bivalve lineages that possess doubly uniparental inheritance (DUI), mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination. In these cases, females transmit a female mtDNA to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons. Because M mtDNA is inherited in the same way as Y chromosomes, it has been hypothesized that mtDNA may be responsible for sex determination. However, the role of mitochondrial and nuclear genes in sex determination has yet to be validated in DUI bivalves. In this study, we used DNA, RNA, and mitochondrial short noncoding RNA (sncRNA) sequencing to explore the role of mitochondrial and nuclear elements in the sexual development pathway of the freshwater mussel Potamilus streckersoni (Bivalvia: Unionida). We found that the M mtDNA sheds a sncRNA partially within a male-specific mitochondrial gene that targets a pathway hypothesized to be involved in female development and mitophagy. RNA-seq confirmed the gene target was significantly upregulated in females, supporting a direct role of mitochondrial sncRNAs in gene silencing. These findings support the hypothesis that M mtDNA inhibits female development. Genome-wide patterns of genetic differentiation and heterozygosity did not support a nuclear sex-determining region, although we cannot reject that nuclear factors are involved with sex determination. Our results provide further evidence that mitochondrial loci contribute to diverse, nonrespiratory functions and additional insights into an unorthodox sex-determining system.


Assuntos
Bivalves , Pequeno RNA não Traduzido , Feminino , Animais , Bivalves/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Genes Mitocondriais
10.
World Neurosurg ; 180: e127-e134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683922

RESUMO

OBJECTIVE: Three-dimensionally (3D) printed polyether-ether-ketone (PEEK) implants are a relatively novel option for cranioplasty that have recently gained popularity. However, there is ongoing debate with respect to material efficacy and safety compared to autologous bone grafts. The purpose of this study was to offer our institution's experience and add to the growing body of literature. METHODS: A single-institution retrospective analysis of patients undergoing cranioplasties between 2016 and 2021. Patients were divided into PEEK and autologous cranioplasty cohorts. Parameters of interest included patient demographics as well as perioperative (<3 months postoperative) and long-term outcomes (>3 months postoperative). A P value < 0.05 was considered statistically significant. RESULTS: A total of 31 patients met inclusion criteria (PEEK: 15, Autologous: 16). Mean age of total cohort was 48.9 years (range 19-82 years). Modified Frailty Index (mFI) revealed greater rate of comorbidities among the Autologous group (P = 0.073), which was accounted for in statistical analyses. Multiple logistic regression model revealed significantly higher rate of surgical site infection in the Autologous cohort (31.3% vs. 0%, P = 0.011). Minor complications were similar between groups, while the Autologous group experienced significantly more major postoperative complications (50%) versus PEEK (13.3%) (P = 0.0291). Otherwise perioperative and long term complication profiles were similar between groups. Additionally, generalized linear model demonstrated both cohorts had similar mean hospital length of stay (LoS) (Autologous: 16.1 vs. PEEK: 10.7 days). CONCLUSIONS: PEEK cranioplasty implants may offer more favorable perioperative complication profiles with similar long-term complication rates and hospital LoS compared to autologous bone implants. Future studies are warranted to confirm our findings in larger series, and further examine the utility of PEEK in cranioplasty.


Assuntos
Procedimentos de Cirurgia Plástica , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Polietilenoglicóis/uso terapêutico , Cetonas , Crânio/cirurgia , Complicações Pós-Operatórias/etiologia
11.
J Phys Chem Lett ; 14(37): 8306-8311, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37681673

RESUMO

The ultrafast proton transfer dynamics of homogeneous formic acid clusters (FA)n, n < 10, are investigated with femtosecond time-resolved mass spectrometry. We monitor the proton transfer pathway following Rydberg state electronic relaxation and find that successful ion pair formation increases logarithmically with cluster size. Ab initio calculations demonstrate similar excitation/relaxation behavior for each cluster, revealing a contact ion pair forms between two molecules composing the cluster before finally a formate anion (HCOO-) is dissociated by the probe pulse. The sub-ps time scale for rearrangement and proton transfer increases almost linearly with cluster size, requiring ∼67 fs per additional formic acid molecule and ranging from 213 ± 51 fs for the trimer to 667 ± 116 fs for FA9. The near-linear trends measured for both rearrangement lifetime and ion pair formation suggest that proton transfer is unlikely in the formic acid dimer but becomes prominent in small clusters.

12.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461691

RESUMO

Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In bivalves, however, mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination in lineages that possess doubly uniparental inheritance (DUI). In these cases, females transmit a female mtDNA (F mtDNA) to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons. Because M mtDNA is inherited in the same way as Y chromosomes, it has been hypothesized that mtDNA may be responsible for sex determination. However, the role of mitochondrial and nuclear genes in sex determination has yet to be validated in DUI bivalves. In this study, we used DNA, RNA, and mitochondrial short non-coding RNA (sncRNA) sequencing to explore the role of mitochondrial and nuclear elements in the sexual development pathway of the freshwater mussel Potamilus streckersoni (Bivalvia: Unionida). We found that the M mtDNA shed a sncRNA partially within a male-specific mitochondrial gene that targeted pathways hypothesized to be involved in female development and mitophagy. RNA-seq confirmed the gene target was significantly upregulated in females, supporting a direct role of mitochondrial sncRNAs in gene silencing. These findings support the hypothesis that M mtDNA inhibits female development. Genome-wide patterns of genetic differentiation and heterozygosity did not support a nuclear sex determining region, although we cannot reject that nuclear factors are involved with sex determination. Our results provide further evidence that mitochondrial loci contribute to diverse, non-respiratory functions and provide a first glimpse into an unorthodox sex determining system.

13.
J Phys Chem Lett ; 14(27): 6278-6285, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37399455

RESUMO

Femtosecond time-resolved mass spectrometry, correlation mapping, and density functional theory calculations are employed to reveal the mechanism of C═C and C≡C formation (and related H2 production) following excitation to the p-Rydberg states of n-butyl bromide. Ultrafast pump-probe mass spectrometry shows that nonadiabatic relaxation operates as a multistep process reaching an intermediate state within ∼500 fs followed by relaxation to a final state within 10 ps of photoexcitation. Absorption of three ultraviolet photons accesses the dense p-Rydberg state manifold, which is further excited by the probe beam for C─C bond dissociation and dehydrogenation reactions. Rapid internal conversion deactivates the dehydrogenation pathways, while activating carbon backbone dissociation pathways. Thus, unsaturated carbon fragments decay with the lifetime of p-Rydberg (∼500 fs), matching the growth recorded in saturated hydrocarbon fragments. The saturated hydrocarbon signals subsequently decay on the picosecond time scale as the molecule relaxes below the Rydberg states and into halogen release channels.

14.
Mol Ecol Resour ; 23(6): 1403-1422, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37092367

RESUMO

The proliferation of genomic sequencing approaches has significantly impacted the field of phylogenetics. Target capture approaches provide a cost-effective, fast and easily applied strategy for phylogenetic inference of non-model organisms. However, several existing target capture processing pipelines are incapable of incorporating whole genome sequencing (WGS). Here, we develop a new pipeline for capture and de novo assembly of the targeted regions using whole genome re-sequencing reads. This new pipeline captured targeted loci accurately, and given its unbiased nature, can be used with any target capture probe set. Moreover, due to its low computational demand, this new pipeline may be ideal for users with limited resources and when high-coverage sequencing outputs are required. We demonstrate the utility of our approach by incorporating WGS data into the first comprehensive phylogenomic reconstruction of the freshwater mussel family Margaritiferidae. We also provide a catalogue of well-curated functional annotations of these previously uncharacterized freshwater mussel-specific target regions, representing a complementary tool for scrutinizing phylogenetic inferences while expanding future applications of the probe set.


Assuntos
Bivalves , Animais , Filogenia , Bivalves/genética , Análise de Sequência , Mapeamento Cromossômico , Sequenciamento Completo do Genoma
15.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034614

RESUMO

In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012-2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.

16.
J Hered ; 114(5): 445-458, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37018459

RESUMO

In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012 and 2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.


Assuntos
Lagartos , Animais , Lagartos/genética , Filogenia , Genômica , Genoma , Cromossomos Sexuais/genética
17.
J Neurosurg Case Lessons ; 5(14)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014003

RESUMO

BACKGROUND: Nocardia cyriacigeorgica represents a rare cause of cerebral abscesses. Rarer still are brainstem abscesses caused by this bacterial species in immunocompetent hosts. In fact, only one such brainstem abscess case has been described in the neurosurgical literature to our knowledge to date. Herein, a case of Nocardia cyriacigeorgica abscess in the pons is reported, as well as a description of its surgical evacuation via the transpetrosal fissure, middle cerebellar peduncle approach. The authors review the utility of this well-described approach in treating such lesions safely and effectively. Finally, the authors briefly review, compare, and contrast related cases to this one. OBSERVATIONS: Augmented reality is additive to and useful for well-described safe entry corridors to the brainstem. Despite surgical success, patients may not regain previously lost neurological function. LESSONS: The transpetrosal fissure, middle cerebellar peduncle approach is safe and effective in evacuating pontine abscesses. Augmented reality guidance supplements but does not replace thorough knowledge of operative anatomy for this complex procedure. A reasonable degree of suspicion for brainstem abscess is prudent even in immunocompetent hosts. A multidisciplinary team is critical to the successful treatment of central nervous system Nocardiosis.

18.
J Hered ; 114(3): 199-206, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36897956

RESUMO

In most animals, mitochondrial DNA is strictly maternally inherited and non-recombining. One exception to this pattern is called doubly uniparental inheritance (DUI), a phenomenon involving the independent transmission of female and male mitochondrial genomes. DUI is known only from the molluskan class Bivalvia. The phylogenetic distribution of male-transmitted mitochondrial DNA (M mtDNA) in bivalves is consistent with several evolutionary scenarios, including multiple independent gains, losses, and varying degrees of recombination with female-transmitted mitochondrial DNA (F mtDNA). In this study, we use phylogenetic methods to test M mtDNA origination hypotheses and infer the prevalence of mitochondrial recombination in bivalves with DUI. Phylogenetic modeling using site concordance factors supported a single origin of M mtDNA in bivalves coupled with recombination acting over long evolutionary timescales. Ongoing mitochondrial recombination is present in Mytilida and Venerida, which results in a pattern of concerted evolution of F mtDNA and M mtDNA. Mitochondrial recombination could be favored to offset the deleterious effects of asexual inheritance and maintain mitonuclear compatibility across tissues. Cardiida and Unionida have gone without recent recombination, possibly due to an extension of the COX2 gene in male mitochondrial DNA. The loss of recombination could be connected to the role of M mtDNA in sex determination or sexual development. Our results support that recombination events may occur throughout the mitochondrial genomes of DUI species. Future investigations may reveal more complex patterns of inheritance of recombinants, which could explain the retention of signal for a single origination of M mtDNA in protein-coding genes.


Assuntos
Bivalves , Genoma Mitocondrial , Animais , Feminino , Masculino , Filogenia , Mitocôndrias/genética , Bivalves/genética , DNA Mitocondrial/genética , Padrões de Herança , Recombinação Genética
19.
J Hered ; 114(5): 513-520, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36869788

RESUMO

Genomic resources across squamate reptiles (lizards and snakes) have lagged behind other vertebrate systems and high-quality reference genomes remain scarce. Of the 23 chromosome-scale reference genomes across the order, only 12 of the ~60 squamate families are represented. Within geckos (infraorder Gekkota), a species-rich clade of lizards, chromosome-level genomes are exceptionally sparse representing only two of the seven extant families. Using the latest advances in genome sequencing and assembly methods, we generated one of the highest-quality squamate genomes to date for the leopard gecko, Eublepharis macularius (Eublepharidae). We compared this assembly to the previous, short-read only, E. macularius reference genome published in 2016 and examined potential factors within the assembly influencing contiguity of genome assemblies using PacBio HiFi data. Briefly, the read N50 of the PacBio HiFi reads generated for this study was equal to the contig N50 of the previous E. macularius reference genome at 20.4 kilobases. The HiFi reads were assembled into a total of 132 contigs, which was further scaffolded using HiC data into 75 total sequences representing all 19 chromosomes. We identified 9 of the 19 chromosomal scaffolds were assembled as a near-single contig, whereas the other 10 chromosomes were each scaffolded together from multiple contigs. We qualitatively identified that the percent repeat content within a chromosome broadly affects its assembly contiguity prior to scaffolding. This genome assembly signifies a new age for squamate genomics where high-quality reference genomes rivaling some of the best vertebrate genome assemblies can be generated for a fraction of previous cost estimates. This new E. macularius reference assembly is available on NCBI at JAOPLA010000000.


Assuntos
Genoma , Lagartos , Humanos , Animais , Genômica/métodos , Mapeamento Cromossômico/métodos , Cromossomos , Lagartos/genética
20.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36712019

RESUMO

Genomic resources across squamate reptiles (lizards and snakes) have lagged behind other vertebrate systems and high-quality reference genomes remain scarce. Of the 23 chromosome-scale reference genomes across the order, only 12 of the ~60 squamate families are represented. Within geckos (infraorder Gekkota), a species-rich clade of lizards, chromosome-level genomes are exceptionally sparse representing only two of the seven extant families. Using the latest advances in genome sequencing and assembly methods, we generated one of the highest quality squamate genomes to date for the leopard gecko, Eublepharis macularius (Eublepharidae). We compared this assembly to the previous, short-read only, E. macularius reference genome published in 2016 and examined potential factors within the assembly influencing contiguity of genome assemblies using PacBio HiFi data. Briefly, the read N50 of the PacBio HiFi reads generated for this study was equal to the contig N50 of the previous E. macularius reference genome at 20.4 kilobases. The HiFi reads were assembled into a total of 132 contigs, which was further scaffolded using HiC data into 75 total sequences representing all 19 chromosomes. We identified that 9 of the 19 chromosomes were assembled as single contigs, while the other 10 chromosomes were each scaffolded together from two or more contigs. We qualitatively identified that percent repeat content within a chromosome broadly affects its assembly contiguity prior to scaffolding. This genome assembly signifies a new age for squamate genomics where high-quality reference genomes rivaling some of the best vertebrate genome assemblies can be generated for a fraction previous cost estimates. This new E. macularius reference assembly is available on NCBI at JAOPLA010000000. The genome version and its associated annotations are also available via this Figshare repository https://doi.org/10.6084/m9.figshare.20069273 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA