Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 382: 110647, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499996

RESUMO

Cytochrome c, an iron containing metalloprotein in the mitochondria of the cells with an oxide/redox property, plays key role in the cell apoptotic pathway. In this study, the interaction of silver nanoparticles (AgNPs) with cytochrome c (Cyt c) was investigated by using a combination of spectroscopic, imaging and thermodynamic techniques, including dynamic light scattering (DLS), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy, near and far circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). DLS and UV-vis analysis evidenced the formation of surface complexes of Cyt c on AgNPs. The saturation of surface coverage of AgNPs was observed at 4.36 Cyt c molecules per nm2 of AgNPs. The surface complexation resulted in a promotion of the Ag dissolution overtime. The negative sign of enthalpic (ΔH) contribution suggested that electrostatic forces are indicative forces in the interaction between protein and AgNPs. Moreover, the fluorescence spectra revealed that the conformation of protein was altered around tryptophan (Trp) and tyrosine (Tyr) residues indicating the alteration of the tertiary structure of Cyt c. CD analysis evidenced that the secondary structure of Cyt c was modified under AgNPs-Cyt c interactions and the binding of Cyt c onto AgNPs resulted in remarkable structural perturbation around the active site heme, which in turn alter the protein enzymatic activity. The results of the present study contributed to a deeper insight on the mechanisms of interaction between NPs and biomacromolecules and could help establish the in vivo fate of AgNPs on cellular redox homeostasis.


Assuntos
Citocromos c , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Prata/química , Termodinâmica , Estrutura Secundária de Proteína , Espectrometria de Fluorescência
2.
J Am Chem Soc ; 145(5): 2733-2738, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705935

RESUMO

We have discovered a protein with an amino acid composition exceptionally rich in glycine and cysteine residues in the giant virus mimivirus. This small 6 kDa protein is among the most abundant proteins in the icosahedral 0.75 µm viral particles; it has no predicted function but is probably essential for infection. The aerobically purified red-brownish protein overproduced inEscherichia coli contained both iron and inorganic sulfide. UV/vis, EPR, and Mössbauer studies revealed that the viral protein, coined GciS, accommodated two distinct Fe-S clusters: a diamagnetic S = 0 [2Fe-2S]2+ cluster and a paramagnetic S = 5/2 linear [3Fe-4S]1+ cluster, a geometry rarely stabilized in native proteins. Orthologs of mimivirus GciS were identified within all clades of Megavirinae, a Mimiviridae subfamily infecting Acanthamoeba, including the distantly related tupanviruses, and displayed the same spectroscopic features. Thus, these glycine/cysteine-rich proteins form a new family of viral Fe-S proteins sharing unique Fe-S cluster binding properties.


Assuntos
Vírus Gigantes , Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/química , Vírus Gigantes/metabolismo , Cisteína/química , Glicina , Análise Espectral , Espectroscopia de Ressonância de Spin Eletrônica
3.
J Environ Sci (China) ; 109: 193-205, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607668

RESUMO

The bioaccumulation of PAHs and metal elements in the indigenous lichens Xanthoria parietina was monitored during two years at a quarterly frequency, in 3 sites of contrasted anthropic influence. The impact of the meteorological factors (temperature, relative humidity, rainfall, wind speed) was first estimated through principal component analysis, and then by stepwise multilinear regressions to include wind directions. The pollutants levels reflected the proximity of atmospheric emissions, in particular from a large industrial harbor. High humidity and mild temperatures, and in a lower extent low wind speed and rainfall, also favored higher concentration levels. The contributions of these meteorological aspects became minor when including wind direction, especially when approaching major emission sources. The bioaccumulation integration time towards meteorological variations was on a seasonal basis (1-2 months) but the wind direction and thus local emissions also relied on a longer time scale (12 months). This showed that the contribution of meteorological conditions may be prevalent in remote places, while secondary in polluted areas, and should be definitely taken into account regarding long-term lichen biomonitoring and inter-annual comparisons. In the same time, a quadruple sampling in each site revealed a high homogeneity among supporting tree species and topography. The resulting uncertainty, including sampling, preparation and analysis was below 30% when comfortable analytical conditions were achieved. Finally, the occurrence of unexpected events such as a major forest fire, permitted to evaluate that this type of short, although intense, events did not have a strong influence on PAH and metals bioaccumulation by lichen.


Assuntos
Poluentes Atmosféricos , Líquens , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Ascomicetos , Bioacumulação , Monitoramento Ambiental
4.
Biochim Biophys Acta Bioenerg ; 1861(10): 148252, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32569664

RESUMO

The three presently known enzymes responsible for arsenic-using bioenergetic processes are arsenite oxidase (Aio), arsenate reductase (Arr) and alternative arsenite oxidase (Arx), all of which are molybdoenzymes from the vast group referred to as the Mo/W-bisPGD enzyme superfamily. Since arsenite is present in substantial amounts in hydrothermal environments, frequently considered as vestiges of primordial biochemistry, arsenite-based bioenergetics has long been predicted to be ancient. Conflicting scenarios, however, have been put forward proposing either Arr/Arx or Aio as operating in the ancestral metabolism. Phylogenetic data argue in favor of Aio whereas biochemical and physiological data led several authors to propose Arx/Arr as the most ancient anaerobic arsenite metabolizing enzymes. Here we combine phylogenetic approaches with physiological and biochemical experiments to demonstrate that the Arx/Arr enzymes could not have been functional in the Archaean geological eon. We propose that Arr reacts with menaquinones to reduce arsenate whereas Arx reacts with ubiquinone to oxidize arsenite, in line with thermodynamic considerations. The distribution of the quinone biosynthesis pathways, however, clearly indicates that the ubiquinone pathway is recent. An updated phylogeny of Arx furthermore reinforces the hypothesis of a recent emergence of this enzyme. We therefore conclude that anaerobic arsenite redox conversion in the Archaean must have been performed in a metabolism involving Aio.


Assuntos
Arseniato Redutases/metabolismo , Arsenitos/metabolismo , Evolução Molecular , Oxirredutases/metabolismo , Filogenia , Arseniato Redutases/genética , Genômica , Oxirredução , Oxirredutases/genética , Termodinâmica
5.
Sci Rep ; 9(1): 12890, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501470

RESUMO

Capable of generating plasmonic and other effects, gold nanostructures can offer a variety of diagnostic and therapy functionalities for biomedical applications, but conventional chemically-synthesized Au nanomaterials cannot always match stringent requirements for toxicity levels and surface conditioning. Laser-synthesized Au nanoparticles (AuNP) present a viable alternative to chemical counterparts and can offer exceptional purity (no trace of contaminants) and unusual surface chemistry making possible direct conjugation with biocompatible polymers (dextran, polyethylene glycol). This work presents the first pharmacokinetics, biodistribution and safety study of laser-ablated dextran-coated AuNP (AuNPd) under intravenous administration in small animal model. Our data show that AuNPd are rapidly eliminated from the blood circulation and accumulated preferentially in liver and spleen, without inducing liver or kidney toxicity, as confirmed by the plasmatic ALAT and ASAT activities, and creatininemia values. Despite certain residual accumulation in tissues, we did not detect any sign of histological damage or inflammation in tissues, while IL-6 level confirmed the absence of any chronic inflammation. The safety of AuNPd was confirmed by healthy behavior of animals and the absence of acute and chronic toxicities in liver, spleen and kidneys. Our results demonstrate that laser-synthesized AuNP are safe for biological systems, which promises their successful biomedical applications.


Assuntos
Ouro/efeitos adversos , Ouro/farmacocinética , Lasers , Nanopartículas Metálicas/química , Segurança , Animais , Peso Corporal/efeitos dos fármacos , Dextranos/química , Feminino , Ouro/química , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ratos , Distribuição Tecidual
6.
Biochim Biophys Acta Bioenerg ; 1860(5): 402-413, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707885

RESUMO

Molybdoenzymes are ubiquitous in living organisms and catalyze, for most of them, oxidation-reduction reactions using a large range of substrates. Periplasmic nitrate reductase (NapAB) from Rhodobacter sphaeroides catalyzes the 2-electron reduction of nitrate into nitrite. Its active site is a Mo bis-(pyranopterin guanine dinucleotide), or Mo-bisPGD, found in most prokaryotic molybdoenzymes. A [4Fe-4S] cluster and two c-type hemes form an intramolecular electron transfer chain that deliver electrons to the active site. Lysine 56 is a highly conserved amino acid which connects, through hydrogen-bonds, the [4Fe-4S] center to one of the pyranopterin ligands of the Mo-cofactor. This residue was proposed to be involved in the intramolecular electron transfer, either defining an electron transfer pathway between the two redox cofactors, and/or modulating their redox properties. In this work, we investigated the role of this lysine by combining site-directed mutagenesis, activity assays, redox titrations, EPR and HYSCORE spectroscopies. Removal of a positively-charged residue at position 56 strongly decreased the redox potential of the [4Fe-4S] cluster at pH 8 by 230 mV to 400 mV in the K56H and K56M mutants, respectively, thus affecting the kinetics of electron transfer from the hemes to the [4Fe-4S] center up to 5 orders of magnitude. This effect was partly reversed at acidic pH in the K56H mutant likely due to protonation of the imidazole ring of the histidine. Overall, our study demonstrates the critical role of a charged residue from the second coordination sphere in tuning the reduction potential of the [4Fe-4S] cluster in RsNapAB and related molybdoenzymes.


Assuntos
Proteínas Ferro-Enxofre/química , Nitrato Redutase/química , Proteínas Periplásmicas/química , Rhodobacter sphaeroides/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Transporte de Elétrons , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mutação de Sentido Incorreto , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Oxirredução , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Rhodobacter sphaeroides/genética
7.
Environ Sci Pollut Res Int ; 25(9): 8364-8376, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29307061

RESUMO

Lichen samples from contrasted environments, influenced by various anthropic activities, were investigated focusing on the contaminant signatures according to the atmospheric exposure typologies. Most of the contaminant concentrations measured in the 27 lichen samples, collected around the industrial harbor of Fos-sur-Mer (France), were moderate in rural and urban environments, and reached extreme levels in industrial areas and neighboring cities (Al up to 6567 mg kg-1, Fe 42,398 mg kg-1, or ΣPAH 1417 µg kg-1 for example). At the same time, a strong heterogeneity was noticed in industrial samples while urban and rural ones were relatively homogeneous. Several metals could be associated to steel industry (Fe, Mn, Cd), road traffic, and agriculture (Sb, Cu, Sn), or to a distinct chemical installation (Mo). As well, PCDFs dominated in industrial samples while PCDDs prevailed in urban areas. The particularities observed supported the purpose of this work and discriminated the contributions of various atmospheric pollution emission sources in lichen samples. A statistical approach based on principal component analysis (PCA) was applied and resolved these potential singularities into specific component factors. Even if a certain degree of mixing of the factors is pointed out, relevant relationships were observed with several atmospheric emission sources. By this methodology, the contribution of industrial emissions to the atmospheric metal, PAH, PCB, and PCDD/F levels was roughly estimated to be 60.2%, before biomass burning (10.2%) and road traffic (3.8%). These results demonstrate that lichen biomonitoring offers an encouraging perspective of spatially resolved source apportionment studies.


Assuntos
Monitoramento Ambiental/métodos , Líquens/química , Metais/química , Dibenzodioxinas Policloradas/análise , Cidades , França , Indústrias , Metais/análise , Dibenzodioxinas Policloradas/química
8.
Nat Chem Biol ; 14(3): 306-310, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29377002

RESUMO

Wood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-effective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we describe a new family of fungal lytic polysaccharide monooxygenases (LPMOs) prevalent among white-rot and brown-rot basidiomycetes that is active on xylans-a recalcitrant polysaccharide abundant in wood biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus substantially increase the efficiency of wood saccharification through oxidative cleavage of highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity advances our knowledge on the degradation of woody biomass in nature and offers an innovative solution for improving enzyme cocktails for biorefinery applications.


Assuntos
Basidiomycota/enzimologia , Biomassa , Oxigenases de Função Mista/química , Polissacarídeos/química , Madeira/microbiologia , Biodegradação Ambiental , Biotecnologia/economia , Biotecnologia/métodos , Celulose/química , Biologia Computacional , Análise Custo-Benefício , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Genômica , Glicosilação , Oxigênio/química , Filogenia , Especificidade por Substrato , Transcriptoma , Xilanos/química
9.
Biol Trace Elem Res ; 175(2): 244-253, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27278963

RESUMO

Studies suggest a relationship between semen quality and the concentration of trace elements in serum or seminal plasma. However, trace elements may be linked to DNA and capable of altering the gene expression patterns. Thus, trace element interactions with DNA may contribute to the mechanisms for a trans-generational reproductive effect. We developed an analytical method to determine the amount of trace elements bound to the sperm DNA, and to estimate their affinity for the sperm DNA by the ratio: R = Log [metal concentration in the sperm DNA/metal concentration in seminal plasma]. We then analyzed the concentrations of 15 trace elements (Al, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Ti, V, Zn, As, Sb, and Se) in the seminal plasma and the sperm DNA in 64 normal and 30 abnormal semen specimens with Inductively Coupled Plasma/Mass Spectrometry (ICP-MS). This study showed all trace elements were detected in the seminal plasma and only metals were detected in the sperm DNA. There was no correlation between the metals' concentrations in the seminal plasma and the sperm DNA. Al had the highest affinity for DNA followed by Pb and Cd. This strong affinity is consistent with the known mutagenic effects of these metals. The lowest affinity was observed for Zn and Ti. We observed a significant increase of Al linked to the sperm DNA of patients with oligozoospermia and teratozoospermia. Al's reproductive toxicity might be due to Al linked to DNA, by altering spermatogenesis and expression patterns of genes involved in the function of reproduction.


Assuntos
DNA/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Oligoelementos/metabolismo , Adulto , Humanos , Masculino
10.
Biochim Biophys Acta ; 1857(9): 1353-1362, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27207587

RESUMO

While the molybdenum cofactor in the majority of bisPGD enzymes goes through two consecutive 1-electron redox transitions, previous protein-film voltammetric results indicated the possibility of cooperative (n=2) redox behavior in the bioenergetic enzyme arsenite oxidase (Aio). Combining equilibrium redox titrations, optical and EPR spectroscopies on concentrated samples obtained via heterologous expression, we unambiguously confirm this claim and quantify Aio's redox cooperativity. The stability constant, Ks, of the Mo(V) semi-reduced intermediate is found to be lower than 10(-3). Site-directed mutagenesis of residues in the vicinity of the Mo-cofactor demonstrates that the degree of redox cooperativity is sensitive to H-bonding interactions between the pyranopterin moieties and amino acid residues. Remarkably, in particular replacing the Gln-726 residue by Gly results in stabilization of (low-temperature) EPR-observable Mo(V) with KS=4. As evidenced by comparison of room temperature optical and low temperature EPR titrations, the degree of stabilization is temperature-dependent. This highlights the importance of room-temperature redox characterizations for correctly interpreting catalytic properties in this group of enzymes. Geochemical and phylogenetic data strongly indicate that molybdenum played an essential biocatalytic roles in early life. Molybdenum's redox versatility and in particular the ability to show cooperative (n=2) redox behavior provide a rationale for its paramount catalytic importance throughout the evolutionary history of life. Implications of the H-bonding network modulating Molybdenum's redox properties on details of a putative inorganic metabolism at life's origin are discussed.


Assuntos
Molibdênio/química , Oxirredutases/química , Pterinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Oxirredução
11.
Sci Rep ; 6: 25400, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27151839

RESUMO

Si/SiOx nanoparticles (NPs) produced by laser ablation in deionized water or aqueous biocompatible solutions present a novel extremely promising object for biomedical applications, but the interaction of these NPs with biological systems has not yet been systematically examined. Here, we present the first comprehensive study of biodistribution, biodegradability and toxicity of laser-synthesized Si-SiOx nanoparticles using a small animal model. Despite a relatively high dose of Si-NPs (20 mg/kg) administered intravenously in mice, all controlled parameters (serum, enzymatic, histological etc.) were found to be within safe limits 3 h, 24 h, 48 h and 7 days after the administration. We also determined that the nanoparticles are rapidly sequestered by the liver and spleen, then further biodegraded and directly eliminated in urine without any toxicity effects. Finally, we found that intracellular accumulation of Si-NPs does not induce any oxidative stress damage. Our results evidence a huge potential in using these safe and biodegradable NPs in biomedical applications, in particular as vectors, contrast agents and sensitizers in cancer therapy and diagnostics (theranostics).


Assuntos
Disponibilidade Biológica , Lasers , Nanoestruturas/administração & dosagem , Silício/administração & dosagem , Silício/farmacocinética , Oligoelementos/administração & dosagem , Oligoelementos/farmacocinética , Administração Intravenosa , Animais , Fígado/química , Camundongos , Nanomedicina/métodos , Nanoestruturas/efeitos adversos , Silício/efeitos adversos , Baço/química , Oligoelementos/efeitos adversos , Urina/química
12.
Mar Environ Res ; 104: 20-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25575352

RESUMO

The present study explored the bacteria of the sponge Spongia officinalis in a metal-polluted environment, using PCR-DGGE fingerprinting, culture-dependent approaches and in situ hybridization. The sponge samples collected over three consecutive years in the Western Mediterranean Sea contained high concentrations of zinc, nickel, lead and copper determined by ICP-MS. DGGE signatures indicated a sponge specific bacterial association and suggested spatial and temporal variations. The bacterial culturable fraction associated with S. officinalis and tolerant to heavy metals was isolated using metal-enriched microbiological media. The obtained 63 aerobic strains were phylogenetically affiliated to the phyla Proteobacteria, Actinobacteria, and Firmicutes. All isolates showed high tolerances to the selected heavy metals. The predominant genus Pseudovibrio was localized via CARD-FISH in the sponge surface tissue and validated as a sponge-associated epibiont. This study is the first step in understanding the potential involvement of the associated bacteria in sponge's tolerance to heavy metals.


Assuntos
Bactérias/genética , Biodiversidade , Metais Pesados/análise , Poríferos/química , Poríferos/microbiologia , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Variação Genética , Mar Mediterrâneo , Metais Pesados/metabolismo , Metais Pesados/farmacologia , Dados de Sequência Molecular , Filogenia , Água do Mar/química
13.
J Virol ; 89(1): 824-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355875

RESUMO

UNLABELLED: Giant viruses able to replicate in Acanthamoeba castellanii penetrate their host through phagocytosis. After capsid opening, a fusion between the internal membranes of the virion and the phagocytic vacuole triggers the transfer in the cytoplasm of the viral DNA together with the DNA repair enzymes and the transcription machinery present in the particles. In addition, the proteome analysis of purified mimivirus virions revealed the presence of many enzymes meant to resist oxidative stress and conserved in the Mimiviridae. Megavirus chilensis encodes a predicted copper, zinc superoxide dismutase (Cu,Zn-SOD), an enzyme known to detoxify reactive oxygen species released in the course of host defense reactions. While it was thought that the metal ions are required for the formation of the active-site lid and dimer stabilization, megavirus chilensis SOD forms a very stable metal-free dimer. We used electron paramagnetic resonance (EPR) analysis and activity measurements to show that the supplementation of the bacterial culture with copper and zinc during the recombinant expression of Mg277 is sufficient to restore a fully active holoenzyme. These results demonstrate that the viral enzyme's activation is independent of a chaperone both for disulfide bridge formation and for copper incorporation and suggest that its assembly may not be as regulated as that of its cellular counterparts. A SOD protein is encoded by a variety of DNA viruses but is absent from mimivirus. As in poxviruses, the enzyme might be dispensable when the virus infects Acanthamoeba cells but may allow megavirus chilensis to infect a broad range of eukaryotic hosts. IMPORTANCE: Mimiviridae are giant viruses encoding more than 1,000 proteins. The virion particles are loaded with proteins used by the virus to resist the vacuole's oxidative stress. The megavirus chilensis virion contains a predicted copper, zinc superoxide dismutase (Cu,Zn-SOD). The corresponding gene is present in some megavirus chilensis relatives but is absent from mimivirus. This first crystallographic structure of a viral Cu,Zn-SOD highlights the features that it has in common with and its differences from cellular SODs. It corresponds to a very stable dimer of the apo form of the enzyme. We demonstrate that upon supplementation of the growth medium with Cu and Zn, the recombinant protein is fully active, suggesting that the virus's SOD activation is independent of a copper chaperone for SOD generally used by eukaryotic SODs.


Assuntos
Mimiviridae/química , Mimiviridae/enzimologia , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Superóxido Dismutase/genética , Proteínas Virais/genética
14.
PLoS One ; 9(6): e98941, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24932914

RESUMO

Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded ß-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.


Assuntos
Acidithiobacillus/metabolismo , Azurina/química , Cobre/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Acidithiobacillus/genética , Azurina/genética , Azurina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Dicroísmo Circular , Biologia Computacional/métodos , Modelos Moleculares , Estrutura Secundária de Proteína
15.
J Biosci Bioeng ; 117(1): 25-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23867099

RESUMO

We report on the expression in Aspergillus niger of a laccase gene we used to produce variants in Saccharomyces cerevisiae. Grams of recombinant enzyme can be easily obtained. This highlights the potential of combining this generic laccase sequence to the yeast and fungal expression systems for large-scale productions of variants.


Assuntos
Aspergillus niger/enzimologia , Lacase/biossíntese , Proteínas Recombinantes/metabolismo , Aspergillus niger/genética , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Lacase/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/metabolismo
16.
Chem Res Toxicol ; 25(11): 2513-22, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-22989002

RESUMO

Physical-chemical parameters such as purity, structure, chemistry, length, and aspect ratio of nanoparticles (NPs) are linked to their toxicity. Here, synthetic imogolite-like nanotubes with a set chemical composition but various sizes and shapes were used as models to investigate the influence of these physical parameters on the cyto- and genotoxicity and cellular uptake of NPs. The NPs were characterized using X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and atomic force microscopy (AFM). Imogolite precursors (PR, ca. 5 nm curved platelets), as well as short tubes (ST, ca. 6 nm) and long tubes (LT, ca. 50 nm), remained stable in the cell culture medium. Internalization into human fibroblasts was observed only for the small particles PR and ST. None of the tested particles induced a significant cytotoxicity up to a concentration of 10(-1) mg·mL(-1). However, small sized NPs (PR and ST) were found to be genotoxic at very low concentration 10(-6) mg·mL(-1), while LT particles exhibited a weak genotoxicity. Our results indicate that small size NPs (PR, ST) were able to induce primary lesions of DNA at very low concentrations and that this DNA damage was exclusively induced by oxidative stress. The higher aspect ratio LT particles exhibited a weaker genotoxicity, where oxidative stress is a minor factor, and the likely involvement of other mechanisms. Moreover, a relationship among cell uptake, particle aspect ratio, and DNA damage of NPs was observed.


Assuntos
Alumínio/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Germânio/farmacologia , Nanotubos/química , Alumínio/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dano ao DNA , Relação Dose-Resposta a Droga , Fibroblastos/citologia , Germânio/química , Humanos , Tamanho da Partícula , Relação Estrutura-Atividade
17.
Toxicol Appl Pharmacol ; 262(3): 238-46, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22564537

RESUMO

Using a validated model of culture of rat seminiferous tubules, we assessed the effects of 0.1, 1 and 10 µg/L cadmium (Cd) on spermatogenic cells over a 2-week culture period. With concentrations of 1 and 10 µg/L in the culture medium, the Cd concentration in the cells, determined by ICP-MS, increased with concentration in the medium and the day of culture. Flow cytometric analysis enabled us to evaluate changes in the number of Sertoli cells and germ cells during the culture period. The number of Sertoli cells did not appear to be affected by Cd. By contrast, spermatogonia and meiotic cells were decreased by 1 and 10 µg/L Cd in a time and dose dependent manner. Stage distribution of the meiotic prophase I and qualitative study of the synaptonemal complexes (SC) at the pachytene stage were performed by immunocytochemistry with an anti SCP3 antibody. Cd caused a time-and-dose-dependent increase of total abnormalities, of fragmented SC and of asynapsis from concentration of 0.1 µg/L. Additionally, we observed a new SC abnormality, the "motheaten" SC. This abnormality is frequently associated with asynapsis and SC widening which increased with both the Cd concentration and the duration of exposure. This abnormality suggests that Cd disrupts the structure and function of proteins involved in pairing and/or meiotic recombination. These results show that Cd induces dose-and-time-dependent alterations of the meiotic process of spermatogenesis ex-vivo, and that the lowest metal concentration, which induces an adverse effect, may vary with the cell parameter studied.


Assuntos
Cádmio/toxicidade , Meiose/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Cádmio/administração & dosagem , Cádmio/análise , Relação Dose-Resposta a Droga , Citometria de Fluxo , Masculino , Ratos , Ratos Sprague-Dawley , Células de Sertoli/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Testículo/química , Testículo/citologia
18.
Toxicol Sci ; 116(1): 286-96, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20360146

RESUMO

There is evidence that exposure to environmental factors is at least partly responsible for changes in semen quality observed over the past decades. The detection of reproductive toxicants under Registration, Evaluation and Authorisation of Chemicals (REACH) will impact animal use for regulatory safety testing. We first validated a model of culture of rat seminiferous tubules for toxicological studies on spermatogenesis. Then, using this model of culture, we assessed the deleterious effects of 1, 10, and 100 microg/l hexavalent chromium [Cr(VI)] on meiotic cells. The prophase I of meiosis was studied in vivo and ex vivo. Bromo-2'-deoxyuridine (BrdU) was used to describe the kinetics of germ cell differentiation. SCP3 labeling allowed to establish the distribution of the stages of the meiotic prophase I and to perform a qualitative study of the pachytene stage in the absence or presence of Cr(VI). The development of the meiotic step of pubertal rats was similar in vivo and ex vivo. The number of total cells appeared not affected by the presence of Cr(VI) irrespective of its concentration. However, the numbers of late spermatocytes and of round spermatids were decreased by Cr(VI) even at the lower concentration. The percentage of synaptonemal complex abnormalities increased slightly with the time of culture and dramatically with Cr(VI) concentrations. This model of culture appears suitable for toxicological studies. This study shows that Cr(VI) is toxic for meiotic cells even at low concentrations, and its toxicity increases in a dose-dependent manner.


Assuntos
Cromo/toxicidade , Meiose/efeitos dos fármacos , Modelos Biológicos , Túbulos Seminíferos/efeitos dos fármacos , Animais , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Ratos , Ratos Wistar , Túbulos Seminíferos/citologia
19.
J Phys Chem B ; 114(4): 1661-5, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20067224

RESUMO

p-Cresylsulfate, a metabolite of p-cresol, is reported as prototypic protein-bound uremic toxin, inefficiently removed by haemodialysis. The binding between p-cresylsulfate or p-cresol and human serum albumin was studied using microcalorimetry. The results confirm that the two molecules are protein-bound. However, the affinity of p-cresylsulfate and p-cresol toward human serum albumin is moderate at 25 degrees C and becomes relatively weak at physiological temperature, 37 degrees C. The binding principally involves van der Waals type interactions, and the binding sites of the two molecules are the same or very close. The low fraction of bound toxin (13-20%) appears to be insufficient to link strong binding to poor removal of this toxin by hemodialysis.


Assuntos
Cresóis/química , Albumina Sérica/química , Sítios de Ligação , Calorimetria , Cresóis/metabolismo , Humanos , Ligação Proteica , Diálise Renal , Albumina Sérica/metabolismo , Ésteres do Ácido Sulfúrico , Temperatura , Termodinâmica
20.
Biophys J ; 97(12): 3168-77, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20006954

RESUMO

The specific recognition of carbohydrates by lectins plays a major role in many cellular processes. Galectin-1 belongs to a family of 15 structurally related beta-galactoside binding proteins that are able to control a variety of cellular events, including cell cycle regulation, adhesion, proliferation, and apoptosis. The three-dimensional structure of galectin-1 has been solved by x-ray crystallography in the free form and in complex with various carbohydrate ligands. In this work, we used a combination of two-dimensional NMR titration experiments and molecular-dynamics simulations with explicit solvent to study the mode of interaction between human galectin-1 and five galactose-containing ligands. Isothermal titration calorimetry measurements were performed to determine their affinities for galectin-1. The contribution of the different hexopyranose units in the protein-carbohydrate interaction was given particular consideration. Although the galactose moiety of each oligosaccharide is necessary for binding, it is not sufficient by itself. The nature of both the reducing sugar in the disaccharide and the interglycosidic linkage play essential roles in the binding to human galectin-1.


Assuntos
Galectina 1/química , Galectina 1/metabolismo , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Calorimetria , Dissacarídeos/química , Dissacarídeos/metabolismo , Galactose/química , Galactose/metabolismo , Glicosídeos/química , Humanos , Ligação de Hidrogênio , Ligantes , Conformação Molecular , Ligação Proteica , Estabilidade Proteica , Software , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...