Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Pediatr Res ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769400

RESUMO

BACKGROUND: Robot-assisted gait training (RAGT) is promising to help walking rehabilitation in cerebral palsy, but training-induced neuroplastic effects have little been investigated. METHODS: Forty unilateral cerebral palsy children aged 4-18 years were randomly allocated in a monocentric study to ten 20-minute RAGT sessions with the G-EO system, five days a week (n = 20) or to a control group (who continued conventional care with six 30-minute physiotherapy sessions, three days a week) (n = 20), two weeks running, from September 2020 to December 2021. Clinical and MRI outcomes were compared before and one month after therapy. The primary outcome was gait speed. Secondary outcomes were a 6-minute walking test distance, Gross Motor Function Measure-88 (GMFM-88) dimensions D and E, Patient Global Impression of Improvement, resting-state functional connectivity within the sensorimotor network, and structural connectivity in the corticospinal tracts. RESULTS: Gait speed and the 6-minute walking test distance improved more after RAGT. Resting-state functional connectivity increased after RAGT but decreased in controls between superior and lateral healthy or lateral injured sensorimotor networks. GMFM-88 and structural connectivity in corticospinal tracts were unchanged. Impression of improvement in children was better after RAGT. CONCLUSION: Short-term benefit of repetitive RAGT on walking abilities and functional cerebral connectivity was found in unilateral cerebral palsy children. IMPACT STATEMENT: Short-term repetitive robot-assisted gait training improves gait speed and walking resistance and increases cerebral functional connectivity in unilateral cerebral palsy. GMFM dimensions D and E were unchanged after short-term repetitive robot-assisted gait training in unilateral cerebral palsy.

2.
Neurobiol Dis ; 191: 106398, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182075

RESUMO

Parkinson's disease (PD) is characterized by the progressive and asymmetrical degeneration of the nigrostriatal dopamine neurons and the unilateral presentation of the motor symptoms at onset, contralateral to the most impaired hemisphere. We previously developed a rat PD model that mimics these typical features, based on unilateral injection of a substrate inhibitor of excitatory amino acid transporters, L-trans-pyrrolidine-2,4-dicarboxylate (PDC), in the substantia nigra (SN). Here, we used this progressive model in a multilevel study (behavioral testing, in vivo 1H-magnetic resonance spectroscopy, slice electrophysiology, immunocytochemistry and in situ hybridization) to characterize the functional changes occurring in the cortico-basal ganglia-cortical network in an evolving asymmetrical neurodegeneration context and their possible contribution to the cell death progression. We focused on the corticostriatal input and the subthalamic nucleus (STN), two glutamate components with major implications in PD pathophysiology. In the striatum, glutamate and glutamine levels increased from presymptomatic stages in the PDC-injected hemisphere only, which also showed enhanced glutamatergic transmission and loss of plasticity at corticostriatal synapses assessed at symptomatic stage. Surprisingly, the contralateral STN showed earlier and stronger reactivity than the ipsilateral side (increased intraneuronal cytochrome oxidase subunit I mRNA levels; enhanced glutamate and glutamine concentrations). Moreover, its lesion at early presymptomatic stage halted the ongoing neurodegeneration in the PDC-injected SN and prevented the expression of motor asymmetry. These findings reveal the existence of endogenous interhemispheric processes linking the primary injured SN and the contralateral STN that could sustain progressive dopamine neuron loss, opening new perspectives for disease-modifying treatment of PD.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Ratos , Animais , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Glutamina/metabolismo , Transtornos Parkinsonianos/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Glutamatos/metabolismo , Oxidopamina/farmacologia
3.
Front Nutr ; 10: 1211321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662591

RESUMO

Introduction: This randomized, controlled, single-blinded trial assessed the effect of magnesium (Mg)-Teadiola (Mg, vitamins B6, B9, B12, Rhodiola, and green tea/L-theanine) versus placebo on the brain response to stressful thermal stimulus in chronically stressed, but otherwise healthy subjects. Impacts on stress-related quality-of-life parameters (depression, anxiety, sleep, and perception of pain) were also explored. Methods: The study recruited a total of 40 adults (20 per group), suffering from stress for more than 1 month and scaling ≥14 points on the Depression Anxiety Stress Scale (DASS)-42 questionnaire at the time of inclusion. Individuals received oral Mg-Teadiola or placebo for 28 days (D). fMRI analysis was used to visualize the interplay between stress and pain cerebral matrices, using thermal stress model, at baseline (D0) and after D28. Results: Based on blood-oxygen-level-dependent (BOLD) signal variations during the stress stimulation (before pain perception), a significantly increased activation between D0 and D28 was observed for left and right frontal area (p = 0.001 and p = 0.002, respectively), left and right anterior cingulate cortex (ACC) (p = 0.035 and p = 0.04, respectively), and left and right insula (p = 0.034 and p = 0.0402, respectively) in Mg-Teadiola versus placebo group. During thermal pain stimulation, a significantly diminished activation of the pain matrix was observed between D0 and D28, for left and right prefrontal area (both p = 0.001), left and right insula (p = 0.008 and p = 0.019, respectively), and left and right ventral striatum (both p = 0.001) was observed in Mg-Teadiola versus placebo group. These results reinforce the clinical observations, showing a perceived benefit of Mg-Teadiola on several parameters. After 1 month of treatment, DASS-42 stress score significantly decreased in Mg-Teadiola group [effect size (ES) -0.46 (-0.91; -0.01), p = 0.048]. Similar reductions were observed on D14 (p = 0.011) and D56 (p = 0.008). Sensitivity to cold also improved from D0 to D28 for Mg-Teadiola versus placebo [ES 0.47 (0.02; 0.92) p = 0.042]. Conclusion: Supplementation with Mg-Teadiola reduced stress on D28 in chronically stressed but otherwise healthy individuals and modulated the stress and pain cerebral matrices during stressful thermal stimulus.

4.
J Neurol ; 270(12): 6033-6043, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37648911

RESUMO

BACKGROUND: Longitudinal measures of structural brain changes using MRI in relation to clinical features and progression patterns in PD have been assessed in previous studies, but few were conducted in well-defined and large cohorts, including prospective clinical assessments of both motor and non-motor symptoms. OBJECTIVE: We aimed to identify brain volumetric changes characterizing PD patients, and determine whether regional brain volumetric characteristics at baseline can predict motor, psycho-behavioral and cognitive evolution at one year in a prospective cohort of PD patients. METHODS: In this multicentric 1 year longitudinal study, PD patients and healthy controls from the MPI-R2* cohort were assessed for demographical, clinical and brain volumetric characteristics. Distinct subgroups of PD patients according to motor, cognitive and psycho-behavioral evolution were identified at the end of follow-up. RESULTS: One hundred and fifty PD patients and 73 control subjects were included in our analysis. Over one year, there was no significant difference in volume variations between PD and control subjects, regardless of the brain region considered. However, we observed a reduction in posterior cingulate cortex volume at baseline in PD patients with motor deterioration at one year (p = 0.017). We also observed a bilateral reduction of the volume of the amygdala (p = 0.015 and p = 0.041) and hippocampus (p = 0.015 and p = 0.053) at baseline in patients with psycho-behavioral deterioration, regardless of age, dopaminergic treatment and center. CONCLUSION: Brain volumetric characteristics at baseline may predict clinical trajectories at 1 year in PD as posterior cingulate cortex atrophy was associated with motor decline, while amygdala and hippocampus atrophy were associated with psycho-behavioral decline.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Estudos Longitudinais , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Atrofia/patologia
5.
Neuroimage Clin ; 36: 103231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36279753

RESUMO

Several postmortem studies have shown iron accumulation in the substantia nigra of Parkinson's disease patients. Iron concentration can be estimated via MRI-R2∗ mapping. To assess the changes in R2∗ occurring in Parkinson's disease patients compared to controls, a multicentre transversal study was carried out on a large cohort of Parkinson's disease patients (n = 163) with matched controls (n = 82). In this study, 44 patients and 11 controls were removed due to motion artefacts, 21 patient and 6 controls to preserve matching. Thus, 98 patients and 65 age and sex-matched healthy subjects were selected with enough image quality. The study was conducted on patients with early to late stage Parkinson's disease. The images were acquired at 3Tesla in 12 clinical centres. R2∗ values were measured in subcortical regions of interest (substantia nigra, red nucleus, striatum, globus pallidus externus and globus pallidus internus) contralateral (dominant side) and ipsilateral (non dominant side) to the most clinically affected hemibody. As the observed inter-subject R2∗ variability was significantly higher than the disease effect, an original strategy (intrasubject subcortical quantitative referencing, ISQR) was developed using the measurement of R2∗ in the red nucleus as an intra-subject reference. R2∗ values significantly increased in Parkinson's disease patients when compared with controls; in the substantia nigra (SN) in the dominant side (D) and in the non dominant side (ND), respectively (PSN_D and PSN_ND < 0.0001). After stratification into four subgroups according to the disease duration, no significant R2∗ difference was found in all regions of interest when comparing Parkinson's disease subgroups. By applying our ISQR strategy, R2(ISQR)∗ values significantly increased in the substantia nigra (PSN_D and PSN_ND < 0.0001) when comparing all Parkinson's disease patients to controls. R2(ISQR)∗ values in the substantia nigra significantly increased with the disease duration (PSN_D = 0.01; PSN_ND = 0.03) as well as the severity of the disease (Hoehn & Yahr scale <2 and ≥ 2, PSN_D = 0.02). Additionally, correlations between R2(ISQR)∗ and clinical features, mainly related to the severity of the disease, were found. Our results support the use of ISQR to reduce variations not directly related to Parkinson's disease, supporting the concept that ISQR strategy is useful for the evaluation of Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Núcleo Rubro , Ferro
6.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012234

RESUMO

The exact neurobiological mechanisms of bipolar disorder (BD) remain unknown. However, some neurometabolites could be implicated, including Glutamate (Glu), Glutamine (Gln), Glx, and N-acetylaspartate (NAA). Proton Magnetic Resonance Spectroscopy (1H-MRS) allows one to quantify these metabolites in the human brain. Thus, we conducted a systematic review and meta-analysis of the literature to compare their levels between BD patients and healthy controls (HC). The main inclusion criteria for inclusion were 1H-MRS studies comparing levels of Glu, Gln, Glx, and NAA in the prefrontal cortex (PFC), anterior cingulate cortex (ACC), and hippocampi between patients with BD in clinical remission or a major depressive episode and HC. Thirty-three studies were included. NAA levels were significantly lower in the left white matter PFC (wmPFC) of depressive and remitted BD patients compared to controls and were also significantly higher in the left dorsolateral PFC (dlPFC) of depressive BD patients compared to HC. Gln levels were significantly higher in the ACC of remitted BD patients compared to in HC. The decreased levels of NAA of BD patients may be related to the alterations in neuroplasticity and synaptic plasticity found in BD patients and may explain the deep white matter hyperintensities frequently observed via magnetic resonance imagery.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Espectroscopia de Prótons por Ressonância Magnética/métodos
7.
Parkinsonism Relat Disord ; 99: 65-72, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35613535

RESUMO

INTRODUCTION: To investigate glutamatergic metabolism changes in the putamen of patients with de novo Parkinson's Disease (PD) and test the hypothesis that glutamate (Glu) levels are abnormally elevated in the putamen contralateral to where the motor clinical signs predominate as expected from observations in animal models. METHODS: 1H NMR spectra from 17 healthy control volunteers were compared with spectra from 17 de novo PD patients of who 14 were evaluated again after 2-3 years of disease progression. Statistical analysis used random-effects models. RESULTS: The only significant difference between PD patients and controls was a higher glutamine (Gln) concentration in the putamen ipsilateral to the hemibody with predominant motor signs (Visit 1: 6.0 ± 0.4 mM vs. 5.2 ± 0.2 mM, p < 0.05; Visit 2: 6.2 ± 0.3 mM vs. 5.2 ± 0.2 mM, p < 0.05). At Visit 1, PD patients had higher Glu and Gln levels in the putamen ipsilateral versus contralateral to dominant clinical signs (Glu: 12.2 ± 0.6 mM vs. 10.4 ± 0.6 mM, p < 0.05; Gln: 6.0 ± 0.4 mM vs. 4.8 ± 0.4 mM, p < 0.05; Glu and Gln pool (Glx): 17.9 ± 0.8 mM vs. 14.7 ± 1.1 mM, p < 0.05). At Visit 2, the sum of the two metabolites remained significantly higher in the ipsilateral versus contralateral putamen (Glx: 18.3 ± 0.6 mM vs. 16.1 ± 0.9 mM, p < 0.05). CONCLUSION: In de novo PD patients, the putamen ipsilateral to the more affected hemibody showed elevated Gln versus controls and elevated Glu and Gln concentrations versus the contralateral side. Abnormalities in Glu metabolism therefore occur early in PD but unexpectedly in the putamen contralateral to the more damaged hemisphere, suggesting they are not dependent solely on dopamine loss.


Assuntos
Ácido Glutâmico , Doença de Parkinson , Animais , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Doença de Parkinson/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Putamen/diagnóstico por imagem , Putamen/metabolismo
8.
Magn Reson Chem ; 60(7): 597-605, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35037331

RESUMO

In food, salt has several key roles including conservative and food perception. For this latter, it is well-known that the interaction of sodium with the food matrix modifies the consumer perception. It is then critical to characterize these interactions in various real foods. For this purpose, we exploited the information obtained on both single and double quantum 23 Na nuclear magnetic resonance (NMR) spectroscopies. All salted food samples studied showed strong interactions with the food matrix leading to quadrupolar interactions. However, for some of them, the single quantum analysis did not match the theoretical prediction. This was explained by the presence of another type of sodium population, which did not produce quadrupolar interactions. This finding is of critical importance to perform quantitative magnetic resonance imaging (MRI) and to understand the consumer salty taste perception.


Assuntos
Sódio , Espectroscopia de Ressonância Magnética/métodos , Sódio/análise , Sódio/química , Sódio/metabolismo
9.
J Parkinsons Dis ; 12(1): 397-409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34744050

RESUMO

BACKGROUND: Visual illusions (VI) in Parkinson's disease (PD) are generally considered as an early feature of the psychosis spectrum leading to fully formed visual hallucinations (VH), although this sequential relationship has not been clearly demonstrated. OBJECTIVE: We aimed to determine whether there are any overlapping, potentially graded patterns of structural and functional connectivity abnormalities in PD with VI and with VH. Such a finding would argue for a continuum between these entities, whereas distinct imaging features would suggest different neural underpinnings for the phenomena. METHODS: In this case control study, we compared structural and resting state functional MRI brain patterns of PD patients with VH (PD-H, n = 20), with VI (PD-I, n = 19), and without VH or VI (PD-C, n = 23). RESULTS: 1) PD-H had hypo-connectivity between the ILO and anterior cingulate precuneus and parahippocampal gyrus compared to PD-C and PD-I; 2) In contrast, PD-I had hyper-connectivity between the inferior frontal gyrus and the postcentral gyrus compared to PD-C and PD-H. Moreover, PD-I had higher levels of functional connectivity between the amygdala, hippocampus, insula, and fronto-temporal regions compared to PD-H, together with divergent patterns toward the cingulate. 3) Both PD-I and PD-H had functional hypo-connectivity between the lingual gyrus and the parahippocampal region vs. PD-C, and no significant grey matter volume differences was observed between PD-I and PD-H. CONCLUSION: Distinct patterns of functional connectivity characterized VI and VH in PD, suggesting that these two perceptual experiences, while probably linked and driven by at least some similar mechanisms, could reflect differing neural dysfunction.


Assuntos
Ilusões , Doença de Parkinson , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Substância Cinzenta , Alucinações/diagnóstico por imagem , Alucinações/etiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem
10.
J Magn Reson ; 332: 107065, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560390

RESUMO

IDEAL-type magnetic resonance spectroscopic imaging (MRSI) sequences require the acquisition of several datasets using optimized sampling in the time domain to reconstruct metabolite maps. Each unitary scan consists of a selective slice (2D) or slab (3D) excitation followed by an evolution time and then the acquisition of the spatially encoded signal. It is critical that the phase variation during the evolution time for each scan is only dependent on chemical shifts. In this paper, we described the apparition of spurious phase due to either the transmit or the receive frequency. The presence of this unwanted phase depends on (i) where the commutation between these two frequencies is performed and (ii) how it is done, as there are two phase commutation modes: continuous and coherent. We present the correction needed in function of the different cases. It appears that some solutions are universal. However, it is critical to know which case is implemented on the MRI scanner, which is not always easy information to have. We illustrated several cases with our preclinical MRI by using the IDEAL spiral method on a 13C phantom.


Assuntos
Encéfalo , Variação de Fase , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imagens de Fantasmas
11.
Brain Sci ; 11(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799582

RESUMO

Chronic disorders of consciousness (DOC) encompass unresponsive wakefulness syndrome and minimally conscious state. Their anatomo-functional correlates are not clearly defined yet, although impairments of functional cortical networks have been reported, as well as the implication of the thalamus and deep brain structures. However, the pallidal functional connectivity with the thalamus and the cortical networks has not been studied so far. Using resting-state functional MRI, we conducted a functional connectivity study between the pallidum, the thalamus and the cortical networks in 13 patients with chronic DOC and 19 healthy subjects. We observed in chronic DOC patients that the thalami were no longer connected to the cortical networks, nor to the pallidums. Concerning the functional connectivity of pallidums, we reported an abolition of the negative correlation with the default mode network, and of the positive correlation with the salience network. The disrupted functional connectivity observed in chronic DOC patients between subcortical structures and cortical networks could be related to the mesocircuit model. A better understanding of the DOC underlying physiopathology could provide food for thought for future therapeutic proposals.

12.
J Neurol ; 267(10): 2829-2841, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32447550

RESUMO

INTRODUCTION: Whether different mechanisms, particularly ocular pathology, could lead to the emergence of visual hallucinations (VH) (defined as false perceptions with no external stimulus) versus visual illusions (VI) (defined as a misperception of a real stimulus) in Parkinson's disease (PD) remains debated. We assessed retinal, clinical and structural brain characteristics depending on the presence of VH or VI in PD. METHODS: In this case-control study, we compared retinal thickness using optical coherence tomography (OCT), between PD patients with: VI (PD-I; n = 26), VH (PD-H; n = 28), and without VI or VH (PD-C; n = 28), and assessed demographic data, disease severity, treatment, anatomical and functional visual complaints, cognitive and visuo-perceptive functions and MRI brain volumetry for each group of PD patients. RESULTS: Parafoveal retina was thinner in PD-H compared to PD-C (p = 0.005) and PD-I (p = 0.009) but did not differ between PD-I and PD-C (p = 0.85). Multivariate analysis showed that 1/retinal parafoveal thinning and total brain gray matter atrophy were independently associated with the presence of VH compared to PD-I; 2/retinal parafoveal thickness, PD duration, sleep quality impairment and total brain gray matter volume were independent factors associated with the presence of VH compared to PD-C; 3/anterior ocular abnormalities were the only factor independently associated with the presence of illusions compared to PD-C. CONCLUSION: These findings reinforce the hypothesis that there may be different mechanisms contributing to VH and VI in PD, suggesting that these two entities may also have a different prognosis rather than simply lying along a continuous spectrum. REGISTRATION NUMBER: Clinicaltrials.gov number NCT01114321.


Assuntos
Alucinações , Ilusões , Doença de Parkinson , Atrofia , Estudos de Casos e Controles , Substância Cinzenta/patologia , Alucinações/etiologia , Humanos , Ilusões/etiologia , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem
13.
Eur J Pain ; 23(10): 1763-1766, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31376307

RESUMO

BACKGROUND: The posterior insula and the medial parietal operculum (PIMO) are part of the pain network. Pain can be induced by direct stimulation of the PIMO, but the clinical consequence of lesions in this brain area is not well known. CASE REPORT: We report the case of a patient with multiple sclerosis who presented a relapse characterized by isolated widespread neuropathic pain. The MRI displayed a single new inflammatory lesion in the juxta cortical white matter of the opercular region. This lesion was extended to the parietal operculum and was associated with the pain syndrome. The patient was treated with high-dose intravenous methylprednisolone, and the pain disappeared progressively. Diffusion-tensor MRI showed that some of the fibres passing through the lesion ended in the PIMO. CONCLUSION: Based on diffusion-tensor MRI we hypothesize that the partial disconnection from afference to the PIMO can lead to widespread neuropathic pain. SIGNIFICANCE: Most of the data concerning the functional role of the PIMO come from stereoelectroencephalography in presurgical evaluation of epilepsy, or from functional imaging (PET or fMRI). There is, however, very few data on the consequences of the lesion of the PIMO. Here, we report the first case of a transient widespread pain syndrome associated to a single, small and reversible inflammatory lesion of the PIMO. Thus, this case highlights the key role of the PIMO in spatial perception of pain.


Assuntos
Esclerose Múltipla/diagnóstico por imagem , Neuralgia/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Glucocorticoides/uso terapêutico , Humanos , Imageamento por Ressonância Magnética , Masculino , Metilprednisolona/uso terapêutico , Esclerose Múltipla/complicações , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/fisiopatologia , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/fisiopatologia , Lobo Parietal/fisiopatologia , Lobo Temporal/fisiopatologia , Substância Branca/fisiopatologia
14.
Magn Reson Med ; 78(4): 1296-1305, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27851869

RESUMO

PURPOSE: Changes in glutamate (Glu) levels occur in a number of neurodegenerative diseases. We proposed the use of 13 C spectroscopy and the highly amplified signal generated by hyperpolarization to achieve spatial and temporal resolutions adequate for in vivo studies of Glu metabolism in the healthy rat brain. Thus, we investigated uptake of hyperpolarized [1-13C ]Glu after a temporary blood-brain barrier (BBB) disruption protocol and its conversion to glutamine (Gln) in the brain. METHODS: [1-13 C]Glu was hyperpolarized using the dynamic nuclear polarization process. A temporary BBB disruption using mannitol allowed hyperpolarized [1-13 C]Glu to reach the brain. Then, hyperpolarized [1-13 C]Glu brain metabolism was observed in vivo by MR spectroscopy experiments at 3T. Products synthesized from [1-13 C]Glu were assigned via liquid chromatography-mass spectrometry. RESULTS: Hyperpolarized [1-13 C]Glu reached 20% ± 2.3% polarization after 90 min. After validation of the BBB disruption protocol, hyperpolarized [1-13 C]Glu (175.4 ppm) was detected inside the rat brain, and the formation of [1-13 C]Gln at 174.9 ppm was also observed. CONCLUSION: The Gln synthesis from hyperpolarized [1-13 C]Glu can be monitored in vivo in the healthy rat brain after opening the BBB. Magn Reson Med 78:1296-1305, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Isótopos de Carbono/metabolismo , Glucose/metabolismo , Ácido Glutâmico/análise , Ácido Glutâmico/química , Glutamina/análise , Glutamina/química , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos , Ratos Sprague-Dawley
15.
Behav Brain Res ; 317: 301-310, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27638036

RESUMO

Dopamine dysregulation syndrome (DDS) has been attributed to both dopamine replacement therapies (DRT) and the mesencephalic dopaminergic lesion. The DRT reinforcement effect is due to its action on the reward system, particularly on the nucleus accumbens (NAc). This nucleus receives two major projections, a glutamatergic from the prefrontal cortex and a dopaminergic from the posterior ventral tegmental area (pVTA). The latter modulate the former within the NAc. pVTA has been demonstrated to be implicated in the motivational effect of bromocriptine (dopamine 2 receptor (D2R) agonist) in bilateral pVTA-lesioned animals. Therefore the potential implication of the metabotropic glutamate receptor 5 (mGluR5) antagonist (MTEP: 3-((2-Methyl-1,3-thiazol-4-yl)ethynyl)pyridine) on bromocriptine-induced conditioned place preference (CPP) was explored. Results showed that the administration of the MTEP blocked completely the bromocriptine-induced CPP in bilateral pVTA-lesioned rats. Both the CPP acquisition and expression were abolished. These effects are due, at least to an increase of the glutamate concentration and that of mGlu5 receptor expression in the NAc shell of the pVTA-lesioned animals. Altogether these data demonstrated the importance of the mGlu5 receptor in the bromocriptine induced-reinforcement and that DDS is probably due to DRT effect on this glutamate receptor.


Assuntos
Antiparkinsonianos/farmacologia , Bromocriptina/farmacologia , Condicionamento Operante/efeitos dos fármacos , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Tiazóis/farmacologia , Área Tegmentar Ventral/lesões , Adrenérgicos/toxicidade , Inibidores da Captação Adrenérgica/farmacologia , Animais , Desipramina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Oxidopamina/toxicidade , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Área Tegmentar Ventral/efeitos dos fármacos
16.
J Neurochem ; 136(5): 1004-16, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26576509

RESUMO

The long-term effects and action mechanisms of subthalamic nucleus (STN) high-frequency stimulation (HFS) for Parkinson's disease still remain poorly characterized, mainly due to the lack of experimental models relevant to clinical application. To address this issue, we performed a multilevel study in freely moving hemiparkinsonian rats undergoing 5-week chronic STN HFS, using a portable constant-current microstimulator. In vivo metabolic neuroimaging by (1) H-magnetic resonance spectroscopy (11.7 T) showed that STN HFS normalized the tissue levels of the neurotransmission-related metabolites glutamate, glutamine and GABA in both the striatum and substantia nigra reticulata (SNr), which were significantly increased in hemiparkinsonian rats, but further decreased nigral GABA levels below control values; taurine levels, which were not affected in hemiparkinsonian rats, were significantly reduced. Slice electrophysiological recordings revealed that STN HFS was, uniquely among antiparkinsonian treatments, able to restore both forms of corticostriatal synaptic plasticity, i.e. long-term depression and potentiation, which were impaired in hemiparkinsonian rats. Behavior analysis (staircase test) showed a progressive recovery of motor skill during the stimulation period. Altogether, these data show that chronic STN HFS efficiently counteracts metabolic and synaptic defects due to dopaminergic lesion in both the striatum and SNr. Comparison of chronic STN HFS with acute and subchronic treatment further suggests that the long-term benefits of this treatment rely both on the maintenance of acute effects and on delayed actions on the basal ganglia network. We studied the effects of chronic (5 weeks) continuous subthalamic nucleus (STN) high-frequency stimulation (HFS) in hemiparkinsonian rats. The levels of glutamate and GABA in the striatum () and substantia nigra reticulata (SNr) (), measured by in vivo proton magnetic resonance spectroscopy ((1) H-MRS), were increased by 6-hydroxydopamine (6-OHDA) lesion, which also disrupted corticostriatal synaptic plasticity () and impaired forepaw skill () in the staircase test. Five-week STN HFS normalized glutamate and GABA levels and restored both synaptic plasticity and motor function. A partial behavioral recovery was observed at 2-week STN HFS.


Assuntos
Gânglios da Base/metabolismo , Comportamento Animal/efeitos dos fármacos , Estimulação Encefálica Profunda , Plasticidade Neuronal/efeitos dos fármacos , Substância Negra/metabolismo , Núcleo Subtalâmico/metabolismo , Animais , Gânglios da Base/fisiopatologia , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Estimulação Encefálica Profunda/métodos , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Ratos , Substância Negra/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Tempo
17.
Radiology ; 278(2): 505-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26237591

RESUMO

PURPOSE: To assess the neurochemical profile in the putamen of patients with parkinsonian syndromes undergoing L-3,4-dihydroxyphenylalanine (L-DOPA) treatment (drug-on) or after withdrawal of L-DOPA medication (drug-off) compared with healthy volunteers to identify dopaminergic therapy-sensitive biomarkers of Parkinson disease. MATERIALS AND METHODS: The local institutional review board approved the study, and all participants gave informed consent. A short echo-time (29 msec) single-voxel (1-cm(3)) proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopic approach was used at 3 T to explore the metabolic profile in the putamen of patients with Parkinson disease. Spectra obtained from 20 healthy volunteers were blindly compared with spectra obtained from 20 patients with parkinsonian syndromes in drug-on and drug-off conditions in a randomized permuted block study to assess the accuracy of diagnostic biomarkers for Parkinson disease and efficacy of L-DOPA therapy. The statistical tests were two sided, with a type-I error set at α of .05. Random-effects models were used to compare healthy subjects and patients with parkinsonian syndromes in drug-on or drug-off conditions. RESULTS: Measured concentrations of putaminal total N-acetylaspartate (tNAA) (8.1 ± 0.2 vs 9.4 ± 0.4; P < .01), total creatine (tCr) (7.5 ± 0.2 vs 8.3 ± 0.3; P < .01), and myo-inositol (m-Ins) (3.8 ± 0.3 vs 5.6 ± 0.4; P < .001) were significantly lower in patients with parkinsonian syndromes in drug-off condition than in healthy volunteers. Moreover, L-DOPA therapy restored tNAA (9.1 ± 0.4 vs 8.1 ± 0.2; P < .01) and tCr (8.1 ± 0.3 vs 7.5 ± 0.2; P < .01) levels, whereas m-Ins levels remained unchanged. The combined glutamate and glutamine and choline showed no changes in drug-off or drug-on condition compared with those in control subjects. CONCLUSION: tNAA, tCr, and m-Ins were identified as putative biomarkers of Parkinson disease in the putamen of patients. tNAA and tCr levels are responsive to L-DOPA therapy.


Assuntos
Antiparkinsonianos/uso terapêutico , Espectroscopia de Ressonância Magnética/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Prótons , Reprodutibilidade dos Testes , Resultado do Tratamento
18.
Front Behav Neurosci ; 9: 42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25767440

RESUMO

Parkinsonian patients experience not only the physical discomfort of motor disorders but also the considerable psychological distress caused by cognitive deficits and behavioral disorders. These two factors can result in a disruption of social relationships during the symptomatic and even the presymptomatic motor states of the disease. However, it remains difficult, if not impossible, to evaluate social relationships in presymptomatic patients. The present study focused on the evaluation of social relationships within a group of female long-tailed macaques during presymptomatic and symptomatic motor states induced by Chronic Low-Dose (CLD) and then Chronic High-Dose (CHD) systemic administration of 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). Dopaminergic denervation within basal ganglia and cortical areas was evaluated using Positron Emission Tomography (PET) scans with (18)F-DOPA (6-[18F]-fluoro-L-3,4-dihydroxyphenylalanine) radiotracer. Interestingly, social behavioral changes could be identified in the presymptomatic motor state before any motor and/or cognitive impairment occurred. Stronger effects were observed in subordinate animals compared to dominant animals. From baseline state to CLD-presymptomatic motor state, the frequency of emitted affiliative and aggressive behaviors increased. From CLD-presymptomatic to CHD-presymptomatic motor states, the frequency of the three categories of social behaviors (aggressive, submissive and affiliative) decreased. At this time, quantitative data analysis in PET scans highlighted a dopaminergic denervation in the insula and the posterior caudate nucleus. Finally, the frequency of the three categories of social behaviors decreased during the stable-symptomatic motor state compared to baseline and presymptomatic motor states; this was also associated with motor and cognitive disorders and a dopaminergic denervation in all the evaluated cortical and subcortical structures.

19.
J Neurochem ; 132(6): 703-12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533782

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficient neurosurgical treatment for advanced Parkinson's disease. Non-invasive metabolic neuroimaging during the course of DBS in animal models may contribute to our understanding of its action mechanisms. Here, DBS was adapted to in vivo proton magnetic resonance spectroscopy at 11.7 T in the rat to follow metabolic changes in main basal ganglia structures, the striatum, and the substantia nigra pars reticulata (SNr). Measurements were repeated OFF and ON acute and subchronic (7 days) STN-DBS in control and parkinsonian (6-hydroxydopamine lesion) conditions. Acute DBS reversed the increases in glutamate, glutamine, and GABA levels induced by the dopamine lesion in the striatum but not in the SNr. Subchronic DBS normalized GABA in both the striatum and SNr, and glutamate in the striatum. Taurine levels were markedly decreased under subchronic DBS in the striatum and SNr in both lesioned and unlesioned rats. Microdialysis in the striatum further showed that extracellular taurine was increased. These data reveal that STN-DBS has duration-dependent metabolic effects in the basal ganglia, consistent with development of adaptive mechanisms. In addition to counteracting defects induced by the dopamine lesion, prolonged DBS has proper effects independent of the pathological condition. Non-invasive metabolic neuroimaging might be useful to understand the physiological mechanisms of deep brain stimulation (DBS). Here, we demonstrate the feasibility of repeated high-field proton magnetic resonance spectroscopy of basal ganglia structures under subthalamic nucleus DBS in control and parkinsonian rats. Results show that DBS has both rapid and delayed effects either dependent or independent of disease state.


Assuntos
Gânglios da Base/metabolismo , Estimulação Encefálica Profunda/tendências , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/terapia , Núcleo Subtalâmico/metabolismo , Núcleo Subtalâmico/cirurgia , Animais , Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
20.
Front Neurosci ; 8: 437, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25610366

RESUMO

The loss of dopamine neurons observed in Parkinson's disease (PD) elicits severe motor control deficits which are reduced by the use of dopamine agonists. However, recent works have indicated that D3-preferential agonists such as pramipexole can induce impulse control disorders (ICDs) such as food craving or compulsive eating. In the present study, we performed an intermittent daily feeding experiment to assess the effect of chronic treatment by pramipexole and VTA bilateral lesion on tolerance for sucrose solution. The impact of such chronic treatment on spontaneous locomotion and spatial memory was also examined. Changes in sucrose tolerance could indicate the potential development of a change in food compulsion or addiction related to the action of pramipexole. Neither the bilateral lesion of the VTA nor chronic treatment with pramipexole altered the spontaneous locomotion or spatial memory in rats. Rats without pramipexole treatment quickly developed a stable intake of sucrose solution in the 12 h access phase. On the contrary, when under daily pramipexole treatment, rats developed a stronger and ongoing escalation of their sucrose solution intakes. In addition, we noted that the change in sucrose consumption was sustained by an increase of the expression of the Dopamine D3 receptor in the core and the shell regions of the nucleus accumbens. The present results may suggest that long-term stimulation of the Dopamine D3 receptor in animals induces a strong increase in sucrose consumption, indicating an effect of this receptor on certain pathological aspects of food eating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...