Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 8417-8424, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405449

RESUMO

Structural degradation of all inorganic CsPbBr3 in the presence of moisture is considered as one of its major limitations to use as an active component in various light-harvesting and light-emitting devices. Herein, we used two similar molecules, H2O and H2S, with similar structures, to follow the decomposition mechanism of CsPbBr3 perovskite nanocrystals. Interestingly, H2O acts as a catalyst for the decomposition of CsPbBr3, which is in contrast to H2S. Our experimental observations followed by density functional theory (DFT) calculations showed that the water molecule is intercalated in the CsPbBr3 perovskite whereas H2S is adsorbed in the (100) planes of CsPbBr3 by a weak electrostatic interaction. According to Pearson's hard-soft acid-base theory, both cations present in CsPbBr3 prefer soft/intermediate bases. In the case of the water molecule, it lacks a soft base and thus it is not directly involved in the reaction whereas H2S can provide a soft base and thus it gets involved in the reaction. Understanding the mechanistic aspects of decomposition can give different methodologies for preventing such unwanted reactions.

2.
J Mater Chem B ; 11(5): 1144-1158, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645247

RESUMO

Steadfast efforts have been made to develop novel materials and incorporate them into functional devices for practical applications, pushing the research on electroactive materials to the forefront of nano electronics. Liquid/liquid interface-assisted polymerization offers a scalable methodology to fabricate hybrid materials with multifunctional applications, in contrast to the conventional and ubiquitous routes. Here, we explored this efficient and versatile approach toward the in situ tailoring of Au-Ag alloy nanostructures with a conducting polymer, poly(3,4-ethylene-dioxythiophene) (PEDOT). With the appropriate choice of organic and inorganic phases for the distribution of monomer and oxidant, the miscibility restraints of the reactants in a single phase were alleviated. Effective nanostructure tuning of highly crystalline and electroactive PEDOT/Au-Ag alloy has been achieved by varying the molar ratio of Au3+/Ag+ in the reaction mixture. The as-synthesized composite is further explored to detect neuromodulator histamine (HA), which displays high sensitivity with a limit of detection (LOD) of 1.5 nM, and selectivity even in the presence of various interfering analogs of 10-fold concentration. Subsequently, density functional theory (DFT) simulations are employed to assess the mode of interaction between HA and the electroactive surfaces. The competency to detect HA in preserved food entails its potential in food spoilage monitoring. Furthermore, the detection of histamine generated by sub-cultured human neuronal cells SH-SY5Y proves its practical viability in health monitoring devices.


Assuntos
Histamina , Neuroblastoma , Humanos , Solventes , Ligas
3.
Nanoscale ; 14(37): 13561-13569, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36073600

RESUMO

Engineering different nanomaterials into a single functional material can impart unique properties of the parental nanoparticles, especially in the field of bio imaging and therapy. Gold nanomaterials having different sizes, shapes and dimensionalities exhibit exceptional properties apart from their non-toxicity and hence are strong candidates in the biomedical field. Designing a hybrid nanomaterial of two gold nanostructures retaining the individual properties of the parental nanomaterials is challenging. Here, we demonstrate the synthesis of a hybrid nanomaterial (GQC@GNR), comprising an extremely small gold nanocluster and a representative of the asymmetric gold nanostructure, i.e., a gold nanorod, both having their own different exclusive optical properties like tuneable emission and NIR absorption characteristics, respectively. The hybrid system is designed to retain its emission and absorption in the NIR region to use it as an agent for simultaneous imaging and therapy. The formation of GQC@GNR and its architectonics heavily depend on the synthesis route and the parameters adopted which in turn have a direct influence on its properties. The architecture and its connection to the optical properties are explained using UV-Vis absorption and photoluminescence spectroscopy, zeta potential, transmission electron microscopy, etc. DFT-based computational modelling supports architectonics as explained by the experimental findings. The formation of the gold-gold hybrid system witnessed interesting science with a strong indication that materials with desired properties can be designed by appropriately modulating the architectonics of hybrid formation. Finally, folate conjugated GQC@GNR demonstrated its efficacy for targeted imaging and photothermal therapy in HeLa cells and tumor-bearing animal models. The detailed therapeutic efficacy of GQC@GNR is also explained based on Raman spectroscopy.


Assuntos
Ouro , Nanotubos , Animais , Ácido Fólico , Ouro/química , Ouro/farmacologia , Células HeLa , Humanos , Nanotubos/química , Imagem Óptica , Terapia Fototérmica
4.
Analyst ; 146(8): 2542-2549, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33899057

RESUMO

We describe and characterize a dual-channel incoherent broadband cavity-enhanced absorption spectrometer (DC-IBBCEAS) for the sensitive measurements of NOx: the sum of nitrogen monoxide (NO) and nitrogen dioxide (NO2) in the atmosphere. The instrument employs two 1 m long optical cavities, with air being extracted from a common sampling line. The first channel (cavity-1) spans 340-380 nm and the second channel (cavity-2) spans the 405-460 nm spectral range, both measuring NO2 simultaneously. High absorption cross-sections of NO2 in both channels are effectively utilized for its sensitive quantification. NO is quantified by titrating it with ozone to NO2 in channel-2, where the difference of NO2 measured from that in channel-1 corresponds to the NO concentration in the sampled air. The instrument offers 1-ppb detection sensitivity for both NO and NO2 with a maximum possible uncertainty of ∼9%. The use of close yet different spectral regions in the two channels readily extended measurements to a broader range without compromising its sensitivity to NOx quantification. This would extend the DC-IBBCEAS applicability to simultaneously monitor interfering species with significant absorption cross-sections in the region in either channel, such as glyoxal (CHOCHO), methylglyoxal (CH3COCHO), and nitrous acid (HONO).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...