Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Autism ; 14(1): 36, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794485

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) are neurodevelopmental conditions accompanied by differences in brain development. Neuroanatomical differences in autism are variable across individuals and likely underpin distinct clinical phenotypes. To parse heterogeneity, it is essential to establish how the neurobiology of ASD is modulated by differences associated with co-occurring conditions, such as attention-deficit/hyperactivity disorder (ADHD). This study aimed to (1) investigate between-group differences in autistic individuals with and without co-occurring ADHD, and to (2) link these variances to putative genomic underpinnings. METHODS: We examined differences in cortical thickness (CT) and surface area (SA) and their genomic associations in a sample of 533 individuals from the Longitudinal European Autism Project. Using a general linear model including main effects of autism and ADHD, and an ASD-by-ADHD interaction, we examined to which degree ADHD modulates the autism-related neuroanatomy. Further, leveraging the spatial gene expression data of the Allen Human Brain Atlas, we identified genes whose spatial expression patterns resemble our neuroimaging findings. RESULTS: In addition to significant main effects for ASD and ADHD in fronto-temporal, limbic, and occipital regions, we observed a significant ASD-by-ADHD interaction in the left precentral gyrus and the right frontal gyrus for measures of CT and SA, respectively. Moreover, individuals with ASD + ADHD differed in CT to those without. Both main effects and the interaction were enriched for ASD-but not for ADHD-related genes. LIMITATIONS: Although we employed a multicenter design to overcome single-site recruitment limitations, our sample size of N = 25 individuals in the ADHD only group is relatively small compared to the other subgroups, which limits the generalizability of the results. Also, we assigned subjects into ADHD positive groupings according to the DSM-5 rating scale. While this is sufficient for obtaining a research diagnosis of ADHD, our approach did not take into account for how long the symptoms have been present, which is typically considered when assessing ADHD in the clinical setting. CONCLUSION: Thus, our findings suggest that the neuroanatomy of ASD is significantly modulated by ADHD, and that autistic individuals with co-occurring ADHD may have specific neuroanatomical underpinnings potentially mediated by atypical gene expression.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/genética , Transtorno Autístico/complicações , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Neuroanatomia , Encéfalo/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/complicações , Genômica
2.
Mol Psychiatry ; 28(5): 2158-2169, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36991132

RESUMO

Individuals with autism spectrum disorder (henceforth referred to as autism) display significant variation in clinical outcome. For instance, across age, some individuals' adaptive skills naturally improve or remain stable, while others' decrease. To pave the way for 'precision-medicine' approaches, it is crucial to identify the cross-sectional and, given the developmental nature of autism, longitudinal neurobiological (including neuroanatomical and linked genetic) correlates of this variation. We conducted a longitudinal follow-up study of 333 individuals (161 autistic and 172 neurotypical individuals, aged 6-30 years), with two assessment time points separated by ~12-24 months. We collected behavioural (Vineland Adaptive Behaviour Scale-II, VABS-II) and neuroanatomical (structural magnetic resonance imaging) data. Autistic participants were grouped into clinically meaningful "Increasers", "No-changers", and "Decreasers" in adaptive behaviour (based on VABS-II scores). We compared each clinical subgroup's neuroanatomy (surface area and cortical thickness at T1, ∆T (intra-individual change) and T2) to that of the neurotypicals. Next, we explored the neuroanatomical differences' potential genomic associates using the Allen Human Brain Atlas. Clinical subgroups had distinct neuroanatomical profiles in surface area and cortical thickness at baseline, neuroanatomical development, and follow-up. These profiles were enriched for genes previously associated with autism and for genes previously linked to neurobiological pathways implicated in autism (e.g. excitation-inhibition systems). Our findings suggest that distinct clinical outcomes (i.e. intra-individual change in clinical profiles) linked to autism core symptoms are associated with atypical cross-sectional and longitudinal, i.e. developmental, neurobiological profiles. If validated, our findings may advance the development of interventions, e.g. targeting mechanisms linked to relatively poorer outcomes.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Seguimentos , Neuroanatomia , Estudos Transversais
3.
Am J Psychiatry ; 179(5): 336-349, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331004

RESUMO

OBJECTIVE: Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition that is associated with significant difficulties in adaptive behavior and variation in clinical outcomes across the life span. Some individuals with ASD improve, whereas others may not change significantly, or regress. Hence, the development of "personalized medicine" approaches is essential. However, this requires an understanding of the biological processes underpinning differences in clinical outcome, at both the individual and subgroup levels, across the lifespan. METHODS: The authors conducted a longitudinal follow-up study of 483 individuals (204 with ASD and 279 neurotypical individuals, ages 6-30 years), with assessment time points separated by ∼12-24 months. Data collected included behavioral data (Vineland Adaptive Behavior Scale-II), neuroanatomical data (structural MRI), and genetic data (DNA). Individuals with ASD were grouped into clinically meaningful "increasers," "no-changers," and "decreasers" in adaptive behavior. First, the authors compared neuroanatomy between outcome groups. Next, they examined whether deviations from the neurotypical neuroanatomical profile were associated with outcome at the individual level. Finally, they explored the observed neuroanatomical differences' potential genetic underpinnings. RESULTS: Outcome groups differed in neuroanatomical features (cortical volume and thickness, surface area), including in "social brain" regions previously implicated in ASD. Also, deviations of neuroanatomical features from the neurotypical profile predicted outcome at the individual level. Moreover, neuroanatomical differences were associated with genetic processes relevant to neuroanatomical phenotypes (e.g., synaptic development). CONCLUSIONS: This study demonstrates, for the first time, that variation in clinical (adaptive) outcome is associated with both group- and individual-level variation in anatomy of brain regions enriched for genes relevant to ASD. This may facilitate the move toward better targeted/precision medicine approaches.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adaptação Psicológica , Transtorno do Espectro Autista/genética , Seguimentos , Humanos , Imageamento por Ressonância Magnética
4.
Autism Res ; 12(4): 645-657, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30741482

RESUMO

Individuals with autism spectrum disorder (ASD) exhibit significant impairments in adaptive functioning that impact on their ability to meet the demands of everyday life. A recurrent finding is that there is a pronounced discrepancy between level of cognitive ability and adaptive functioning, and this is particularly prominent among higher-ability individuals. However, the key clinical and demographic associations of these discrepancies remain unclear. This study included a sample of 417 children, adolescents, and adults with ASD as part of the EU-AIMS LEAP cohort. We examined how age, sex, IQ, levels of ASD symptom and autistic trait severity and psychiatric symptomatology are associated with adaptive functioning as measured by the Vineland Adaptive Behavior Scales-Second Edition and IQ-adaptive functioning discrepancies. Older age, lower IQ and higher social-communication symptoms were associated with lower adaptive functioning. Results also demonstrate that older age, higher IQ and higher social-communication symptoms are associated with greater IQ-adaptive functioning discrepancy scores. By contrast, sensory ASD symptoms, repetitive and restricted behaviors, as well as symptoms of attention deficit/hyperactivity disorder (ADHD), anxiety and depression, were not associated with adaptive functioning or IQ-adaptive functioning discrepancy scores. These findings suggest that it is the core social communication problems that define ASD that contribute to adaptive function impairments that people with ASD experience. They show for the first time that sensory symptoms, repetitive behavior and associated psychiatric symptoms do not independently contribute to adaptive function impairments. Individuals with ASD require supportive interventions across the lifespan that take account of social-communicative ASD symptom severity. Autism Res 2019, 12: 645-657. © 2019 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals, Inc. LAY SUMMARY: This study investigated key clinical and demographic associations of adaptive functioning impairments in individuals with autism. We found that older age, lower IQ and more severe social-communicative symptoms, but not sensory or repetitive symptoms or co-occurring psychiatric symptoms, are associated with lower adaptive functioning and greater ability-adaptive function discrepancies. This suggests that interventions targeting adaptive skills acquisition should be flexible in their timing and intensity across developmental periods, levels of cognitive ability and take account of social-communicative ASD symptom severity.


Assuntos
Atividades Cotidianas/psicologia , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Adolescente , Adulto , Fatores Etários , Criança , Estudos de Coortes , Europa (Continente) , Feminino , Humanos , Inteligência/fisiologia , Estudos Longitudinais , Masculino , Fenótipo , Índice de Gravidade de Doença , Fatores Sexuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...