Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Catheter Cardiovasc Interv ; 97(3): 495-502, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32602976

RESUMO

OBJECTIVES: Coronary sinus (CS) based mitral annuloplasty using the Carillon device is effective in reducing functional mitral valve regurgitation (FMR). However, this positive effect might be dependent on the relation between CS and the mitral annulus. BACKGROUND: Computed tomography (CT) assessment prior to mitral valve interventions is an emerging technique to optimize patient selection. METHODS: In a retrospective analysis 30 patients underwent Carillon device implantation and received CT-angiography prior to CS based percutaneous mitral valve repair. Patients were assigned to responders or non-responders according to the 3-month transthoracic echocardiographic follow-up including quantitative mitral valve regurgitation assessment. A prototype software for CS reconstruction was used to assess distance and angle of both CS and mitral annulus planes. RESULTS: Comparison of the distance and angle of the CS plane and the mitral valve annulus plane showed a significant shorter distance and lower angle in the responder group implicating an impact on procedure success. Our results suggest a CS plane and MV annulus plane with a favorably distance of <7.8 mm and an optimal angle of <14.2° could be considered favorably for mitral annuloplasty using a Carillon device. CONCLUSIONS: Distance and angle of mitral annulus and CS planes determined by three-dimensional reconstructions of CT-angiography might predict a reduction in echocardiographic FMR using Carillon Mitral Contour System.


Assuntos
Anuloplastia da Valva Mitral , Insuficiência da Valva Mitral , Angiografia Coronária , Humanos , Anuloplastia da Valva Mitral/efeitos adversos , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/cirurgia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
2.
Circ Res ; 127(7): 911-927, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32564697

RESUMO

RATIONALE: Vascular calcification, the formation of calcium phosphate crystals in the vessel wall, is mediated by vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms remain elusive, precluding mechanism-based therapies. OBJECTIVE: Phenotypic switching denotes a loss of contractile proteins and an increase in migration and proliferation, whereby VSMCs are termed synthetic. We examined how VSMC phenotypic switching influences vascular calcification and the possible role of the uniquely calcium-dependent reactive oxygen species (ROS)-forming Nox5 (NADPH oxidase 5). METHODS AND RESULTS: In vitro cultures of synthetic VSMCs showed decreased expression of contractile markers CNN-1 (calponin 1), α-SMA (α-smooth muscle actin), and SM22-α (smooth muscle protein 22α) and an increase in synthetic marker S100A4 (S100 calcium binding protein A4) compared with contractile VSMCs. This was associated with increased calcification of synthetic cells in response to high extracellular Ca2+. Phenotypic switching was accompanied by increased levels of ROS and Ca2+-dependent Nox5 in synthetic VSMCs. Nox5 itself regulated VSMC phenotype as siRNA knockdown of Nox5 increased contractile marker expression and decreased calcification, while overexpression of Nox5 decreased contractile marker expression. ROS production in synthetic VSMCs was cytosolic Ca2+-dependent, in line with it being mediated by Nox5. Treatment of VSMCs with Ca2+ loaded extracellular vesicles (EVs) lead to an increase in cytosolic Ca2+. Inhibiting EV endocytosis with dynasore blocked the increase in cytosolic Ca2+ and VSMC calcification. Increased ROS production resulted in increased EV release and decreased phagocytosis by VSMCs. CONCLUSIONS: We show here that contractile VSMCs are resistant to calcification and identify Nox5 as a key regulator of VSMC phenotypic switching. Additionally, we describe a new mechanism of Ca2+ uptake via EVs and show that Ca2+ induces ROS production in VSMCs via Nox5. ROS production is required for release of EVs, which promote calcification. Identifying molecular pathways that control Nox5 and VSMC-derived EVs provides potential targets to modulate vascular remodeling and calcification in the context of mineral imbalance. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Movimento Celular , Proliferação de Células , Vesículas Extracelulares/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Calcificação Vascular/enzimologia , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , NADPH Oxidase 5/genética , Fagocitose , Fenótipo , Transdução de Sinais , Sus scrofa , Calcificação Vascular/genética , Calcificação Vascular/patologia
4.
Sci Rep ; 8(1): 4961, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563538

RESUMO

Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP-/- mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, ß-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.


Assuntos
Aterosclerose/patologia , Proteína Morfogenética Óssea 2/metabolismo , Placa Aterosclerótica/patologia , Proteínas/metabolismo , Calcificação Vascular/patologia , Animais , Aorta/citologia , Aorta/patologia , Biomarcadores/metabolismo , Células Cultivadas , Condrogênese/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas da Matriz Extracelular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/citologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosfatos/efeitos adversos , Cultura Primária de Células , Ligação Proteica , Proteínas/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Calcificação Vascular/induzido quimicamente
5.
PLoS One ; 10(11): e0142335, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26555788

RESUMO

BACKGROUND: Vascular calcification is associated with poor cardiovascular outcome. Histochemical analysis of calcification and the expression of proteins involved in mineralization are usually based on whole section analysis, thereby often ignoring regional differences in atherosclerotic lesions. At present, limited information is available about factors involved in the initiation and progression of atherosclerosis. AIM OF THIS STUDY: This study investigates the intra-section association of micro-calcifications with markers for atherosclerosis in randomly chosen section areas of human coronary arteries. Moreover, the possible causal relationship between calcifying vascular smooth muscle cells and inflammation was explored in vitro. TECHNICAL APPROACH: To gain insights into the pathogenesis of atherosclerosis, we performed analysis of the distribution of micro-calcifications using a 3-MeV proton microbeam. Additionally, we performed systematic analyses of 30 to 40 regions of 12 coronary sections obtained from 6 patients including histology and immuno-histochemistry. Section areas were classified according to CD68 positivity. In vitro experiments using human vascular smooth muscle cells (hVSMCs) were performed to evaluate causal relationships between calcification and inflammation. RESULTS: From each section multiple areas were randomly chosen and subsequently analyzed. Depositions of calcium crystals at the micrometer scale were already observed in areas with early pre-atheroma type I lesions. Micro-calcifications were initiated at the elastica interna concomitantly with upregulation of the uncarboxylated form of matrix Gla-protein (ucMGP). Both the amount of calcium crystals and ucMGP staining increased from type I to IV atherosclerotic lesions. Osteochondrogenic markers BMP-2 and osteocalcin were only significantly increased in type IV atheroma lesions, and at this stage correlated with the degree of calcification. From atheroma area type III onwards a considerable number of CD68 positive cells were observed in combination with calcification, suggesting a pro-inflammatory effect of micro-calcifications. In vitro, invasion assays revealed chemoattractant properties of cell-culture medium of calcifying vascular smooth muscle cells towards THP-1 cells, which implies pro-inflammatory effect of calcium deposits. Additionally, calcifying hVSMCs revealed a pro-inflammatory profile as compared to non-calcifying hVSMCs. CONCLUSION: Our data indicate that calcification of VSMCs is one of the earliest events in the genesis of atherosclerosis, which strongly correlates with ucMGP staining. Our findings suggest that loss of calcification inhibitors and/or failure of inhibitory capacity is causative for the early precipitation of calcium, with concomitant increased inflammation followed by osteochondrogenic transdifferentiation of VSMCs.


Assuntos
Aterosclerose/patologia , Calcinose , Vasos Coronários/patologia , Macrófagos/patologia , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade
6.
Nutrients ; 7(8): 6991-7011, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26295257

RESUMO

Cardiovascular calcification is prevalent in the aging population and in patients with chronic kidney disease (CKD) and diabetes mellitus, giving rise to substantial morbidity and mortality. Vitamin K-dependent matrix Gla-protein (MGP) is an important inhibitor of calcification. The aim of this study was to evaluate the impact of high-dose menaquinone-7 (MK-7) supplementation (100 µg/g diet) on the development of extraosseous calcification in a murine model. Calcification was induced by 5/6 nephrectomy combined with high phosphate diet in rats. Sham operated animals served as controls. Animals received high or low MK-7 diets for 12 weeks. We assessed vital parameters, serum chemistry, creatinine clearance, and cardiac function. CKD provoked increased aortic (1.3 fold; p < 0.05) and myocardial (2.4 fold; p < 0.05) calcification in line with increased alkaline phosphatase levels (2.2 fold; p < 0.01). MK-7 supplementation inhibited cardiovascular calcification and decreased aortic alkaline phosphatase tissue concentrations. Furthermore, MK-7 supplementation increased aortic MGP messenger ribonucleic acid (mRNA) expression (10-fold; p < 0.05). CKD-induced arterial hypertension with secondary myocardial hypertrophy and increased elastic fiber breaking points in the arterial tunica media did not change with MK-7 supplementation. Our results show that high-dose MK-7 supplementation inhibits the development of cardiovascular calcification. The protective effect of MK-7 may be related to the inhibition of secondary mineralization of damaged vascular structures.


Assuntos
Suplementos Nutricionais , Calcificação Vascular/tratamento farmacológico , Vitamina K 2/análogos & derivados , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ecocardiografia , Masculino , Fosfatos/administração & dosagem , Fosfatos/efeitos adversos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Insuficiência Renal Crônica , Calcificação Vascular/prevenção & controle , Vitamina K 2/farmacologia
7.
PLoS One ; 10(6): e0130484, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090792

RESUMO

OBJECTIVE: To investigate therapeutic effects of annexin A1 (anxA1) on atherogenesis in LDLR-/- mice. METHODS: Human recombinant annexin A1 (hr-anxA1) was produced by a prokaryotic expression system, purified and analysed on phosphatidylserine (PS) binding and formyl peptide receptor (FPR) activation. Biodistribution of 99mTechnetium-hr-anxA1 was determined in C57Bl/6J mice. 12 Weeks old LDLR-/- mice were fed a Western Type Diet (WTD) during 6 weeks (Group I) or 12 weeks (Group P). Mice received hr-anxA1 (1 mg/kg) or vehicle by intraperitoneal injection 3 times per week for a period of 6 weeks starting at start of WTD (Group I) or 6 weeks after start of WTD (Group P). Total aortic plaque burden and phenotype were analyzed using immunohistochemistry. RESULTS: Hr-anxA1 bound PS in Ca2+-dependent manner and activated FPR2/ALX. It inhibited rolling and adherence of neutrophils but not monocytes on activated endothelial cells. Half lives of circulating 99mTc-hr-anxA1 were <10 minutes and approximately 6 hours for intravenously (IV) and intraperitoneally (IP) administered hr-anxA1, respectively. Pharmacological treatment with hr-anxA1 had no significant effect on initiation of plaque formation (-33%; P = 0.21)(Group I) but significantly attenuated progression of existing plaques of aortic arch and subclavian artery (plaque size -50%, P = 0.005; necrotic core size -76% P = 0.015, hr-anxA1 vs vehicle) (Group P). CONCLUSION: Hr-anxA1 may offer pharmacological means to treat chronic atherogenesis by reducing FPR-2 dependent neutrophil rolling and adhesion to activated endothelial cells and by reducing total plaque inflammation.


Assuntos
Anexina A1/farmacologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Receptores de LDL/deficiência , Proteínas Recombinantes , Animais , Anexina A1/administração & dosagem , Células Sanguíneas/metabolismo , Células da Medula Óssea/metabolismo , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Vias de Administração de Medicamentos , Humanos , Imunofenotipagem , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/etiologia , Receptores de LDL/genética
8.
Circ Res ; 116(8): 1312-23, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25711438

RESUMO

RATIONALE: Matrix vesicles (MVs), secreted by vascular smooth muscle cells (VSMCs), form the first nidus for mineralization and fetuin-A, a potent circulating inhibitor of calcification, is specifically loaded into MVs. However, the processes of fetuin-A intracellular trafficking and MV biogenesis are poorly understood. OBJECTIVE: The objective of this study is to investigate the regulation, and role, of MV biogenesis in VSMC calcification. METHODS AND RESULTS: Alexa488-labeled fetuin-A was internalized by human VSMCs, trafficked via the endosomal system, and exocytosed from multivesicular bodies via exosome release. VSMC-derived exosomes were enriched with the tetraspanins CD9, CD63, and CD81, and their release was regulated by sphingomyelin phosphodiesterase 3. Comparative proteomics showed that VSMC-derived exosomes were compositionally similar to exosomes from other cell sources but also shared components with osteoblast-derived MVs including calcium-binding and extracellular matrix proteins. Elevated extracellular calcium was found to induce sphingomyelin phosphodiesterase 3 expression and the secretion of calcifying exosomes from VSMCs in vitro, and chemical inhibition of sphingomyelin phosphodiesterase 3 prevented VSMC calcification. In vivo, multivesicular bodies containing exosomes were observed in vessels from chronic kidney disease patients on dialysis, and CD63 was found to colocalize with calcification. Importantly, factors such as tumor necrosis factor-α and platelet derived growth factor-BB were also found to increase exosome production, leading to increased calcification of VSMCs in response to calcifying conditions. CONCLUSIONS: This study identifies MVs as exosomes and shows that factors that can increase exosome release can promote vascular calcification in response to environmental calcium stress. Modulation of the exosome release pathway may be as a novel therapeutic target for prevention.


Assuntos
Cálcio/metabolismo , Exocitose , Exossomos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Vesículas Secretórias/metabolismo , Calcificação Vascular/fisiopatologia , Adolescente , Adulto , Estudos de Casos e Controles , Células Cultivadas , Citocinas/metabolismo , Exossomos/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Transporte Proteico , Proteômica/métodos , Interferência de RNA , Vesículas Secretórias/patologia , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Tetraspaninas/metabolismo , Fatores de Tempo , Transfecção , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Adulto Jovem , alfa-2-Glicoproteína-HS/metabolismo
9.
J Cell Mol Med ; 18(10): 2117-24, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25214012

RESUMO

Annexin A5 (AnxA5) exerts anti-inflammatory, anticoagulant and anti-apoptotic effects through binding cell surface expressed phosphatidylserine. The actions of AnxA5 on atherosclerosis are incompletely understood. We investigated effects of exogenous AnxA5 on plaque morphology and phenotype of advanced atherosclerotic lesions in apoE(-/-) mice. Advanced atherosclerotic lesions were induced in 12 weeks old Western type diet fed apoE(-/-) mice using a collar placement around the carotid artery. After 5 weeks mice were injected either with AnxA5 (n = 8) or vehicle for another 4 weeks. AnxA5 reduced plaque macrophage content both in the intima (59% reduction, P < 0.05) and media (73% reduction, P < 0.01) of advanced atherosclerotic lesions of the carotid artery. These findings corroborated with advanced lesions of the aortic arch, where a 67% reduction in plaque macrophage content was observed with AnxA5 compared to controls (P < 0.01). AnxA5 did not change lesion extension, plaque apoptosis, collagen content, smooth muscle cell content or acellular plaque composition after 4 weeks of treatment as determined by immunohistochemistry in advanced carotid lesions. In vitro, AnxA5 exhibited anti-inflammatory effects in macrophages and a flow chamber based assay demonstrated that AnxA5 significantly inhibited capture, rolling, adhesion as well as transmigration of peripheral blood mononuclear cells on a TNF-α-activated endothelial cell layer. In conclusion, short-term treatment with AnxA5 reduces plaque inflammation of advanced lesions in apoE(-/-) mice likely through interfering with recruitment and activation of monocytes to the inflamed lesion site. Suppressing chronic inflammation by targeting exposed phosphatidylserine may become a viable strategy to treat patients suffering from advanced atherosclerosis.


Assuntos
Anexina A5/metabolismo , Apolipoproteínas E/fisiologia , Modelos Animais de Doenças , Inflamação/prevenção & controle , Placa Aterosclerótica/prevenção & controle , Animais , Anexina A5/genética , Apoptose , Western Blotting , Adesão Celular/fisiologia , Células Cultivadas , Citometria de Fluxo , Técnicas Imunoenzimáticas , Inflamação/genética , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia
10.
PLoS One ; 9(5): e96749, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24801051

RESUMO

OBJECTIVE: Annexin A5 is a phosphatidylserine binding protein that binds dying cells in vivo. Annexin A5 is a potential molecular imaging agent to determine efficacy of anti-cancer therapy in patients. Its rapid clearance from circulation limits tumor uptake and, hence, its sensitivity. The aim of this study is to determine if non-invasive imaging of cell death in tumors will benefit from increasing circulation time of annexin A5 by increasing its size. PROCEDURES: Annexin A5 size was increased by complexation of biotinylated annexin A5 with Alexa-Fluor680-labeled streptavidin. The non-binding variant of annexin A5, M1234, was used as negative control. The HT29 colon carcinoma xenograft model in NMRI nude mice was used to measure tumor uptake in vivo. Tumor uptake of fluorescent annexin A5-variants was measured using non-invasive optical imaging. RESULTS: The annexin A5-streptavidin complex (4 ∶ 1, moles:moles, Mw ∼ 200 kDa) binds phosphatidylserine-expressing membranes with a Hill-coefficient of 5.7 ± 0.5 for Ca2+-binding and an EC50 of 0.9 ± 0.1 mM Ca2+ (EC50 is the Ca2+ concentration required for half maximal binding)(annexin A5: Hill-coefficient 3.9 ± 0.2, EC50 1.5 ± 0.2 mM Ca2+). Circulation half-life of annexin A5-streptavidin is ± 21 minutes (circulation half-life of annexin A5 is ± 4 min.). Tumor uptake of annexin A5-streptavidin was higher and persisted longer than annexin A5-uptake but depended less on phosphatidylserine binding. CONCLUSION: Increasing annexin A5 size prolongs circulation times and increases tumor uptake, but decreases contribution of PS-targeting to tumor uptake and abolishes power to report efficacy of therapy.


Assuntos
Anexina A5/metabolismo , Apoptose , Neoplasias/metabolismo , Fosfatidilserinas/metabolismo , Estreptavidina/química , Animais , Anexina A5/química , Anexina A5/genética , Biotina/química , Biotina/metabolismo , Células HT29 , Meia-Vida , Humanos , Hidrazinas/química , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Microscopia Confocal , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Ligação Proteica , Estrutura Terciária de Proteína , Radiografia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Estreptavidina/metabolismo , Distribuição Tecidual , Transplante Heterólogo
11.
PLoS One ; 7(8): e43229, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952653

RESUMO

BACKGROUND: Vitamin K-antagonists (VKA) are treatment of choice and standard care for patients with venous thrombosis and thromboembolic risk. In experimental animal models as well as humans, VKA have been shown to promote medial elastocalcinosis. As vascular calcification is considered an independent risk factor for plaque instability, we here investigated the effect of VKA on coronary calcification in patients and on calcification of atherosclerotic plaques in the ApoE(-/-) model of atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: A total of 266 patients (133 VKA users and 133 gender and Framingham Risk Score matched non-VKA users) underwent 64-slice MDCT to assess the degree of coronary artery disease (CAD). VKA-users developed significantly more calcified coronary plaques as compared to non-VKA users. ApoE(-/-) mice (10 weeks) received a Western type diet (WTD) for 12 weeks, after which mice were fed a WTD supplemented with vitamin K(1) (VK(1), 1.5 mg/g) or vitamin K(1) and warfarin (VK(1)&W; 1.5 mg/g & 3.0 mg/g) for 1 or 4 weeks, after which mice were sacrificed. Warfarin significantly increased frequency and extent of vascular calcification. Also, plaque calcification comprised microcalcification of the intimal layer. Furthermore, warfarin treatment decreased plaque expression of calcification regulatory protein carboxylated matrix Gla-protein, increased apoptosis and, surprisingly outward plaque remodeling, without affecting overall plaque burden. CONCLUSIONS/SIGNIFICANCE: VKA use is associated with coronary artery plaque calcification in patients with suspected CAD and causes changes in plaque morphology with features of plaque vulnerability in ApoE(-/-) mice. Our findings underscore the need for alternative anticoagulants that do not interfere with the vitamin K cycle.


Assuntos
Aterosclerose/tratamento farmacológico , Calcinose/induzido quimicamente , Placa Aterosclerótica/metabolismo , Vitamina K/antagonistas & inibidores , Idoso , Animais , Apolipoproteínas E/genética , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/fisiopatologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fenótipo , Risco , Tromboembolia/patologia , Varfarina/farmacologia
12.
Blood Rev ; 26(4): 155-66, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22520397

RESUMO

Vitamin K-antagonists (VKA) are the most widely used anti-thrombotic drugs with substantial efficacy in reducing risk of arterial and venous thrombosis. Several lines of evidence indicate, however, that VKA inhibit not only post-translational activation of vitamin K-dependent coagulation factors but also synthesis of functional extra-hepatic vitamin K-dependent proteins thereby eliciting undesired side-effects. Vascular calcification is one of the recently revealed side-effects of VKA. Vascular calcification is an actively regulated process involving vascular cells and a number of vitamin K-dependent proteins. Mechanistic understanding of vascular calcification is essential to improve VKA-based treatments of both thrombotic disorders and atherosclerosis. This review addresses vitamin K-cycle and vitamin K-dependent processes of vascular calcification that are affected by VKA. We conclude that there is a growing need for better understanding of the effects of anticoagulants on vascular calcification and atherosclerosis.


Assuntos
Anticoagulantes/efeitos adversos , Calcificação Vascular/induzido quimicamente , Vitamina K/antagonistas & inibidores , Varfarina/efeitos adversos , Animais , Anticoagulantes/uso terapêutico , Humanos , Varfarina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...