Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(8): 1038-1050, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577885

RESUMO

The ethylene-forming enzyme (EFE) is an Fe(II), 2-oxoglutarate (2OG), and l-arginine (l-Arg)-dependent oxygenase that either forms ethylene and three CO2/bicarbonate from 2OG or couples the decarboxylation of 2OG to C5 hydroxylation of l-Arg. l-Arg binds with C5 toward the metal center, causing 2OG to change from monodentate to chelate metal interaction and OD1 to OD2 switch of D191 metal coordination. We applied anaerobic UV-visible spectroscopy, X-ray crystallography, and computational approaches to three EFE systems with high-resolution structures. The ineffective l-Arg analogue l-canavanine binds to the EFE with O5 pointing away from the metal center while promoting chelate formation by 2OG but fails to switch the D191 metal coordination from OD1 to OD2. Substituting alanine for R171 that interacts with 2OG and l-Arg inactivates the protein, prevents metal chelation by 2OG, and weakens l-Arg binding. The R171A EFE had electron density at the 2OG binding site that was identified by mass spectrometry as benzoic acid. The substitution by alanine of Y306 in the EFE, a residue 12 Å away from the catalytic metal center, generates an interior cavity that leads to multiple local and distal structural changes that reduce l-Arg binding and significantly reduce the enzyme activity. Flexibility analyses revealed correlated and anticorrelated motions in each system, with important distinctions from the wild-type enzyme. In combination, the results are congruent with the currently proposed enzyme mechanism, reinforce the importance of metal coordination by OD2 of D191, and highlight the importance of the second coordination sphere and longer range interactions in promoting EFE activity.


Assuntos
Canavanina , Compostos Ferrosos , Liases , Compostos Ferrosos/metabolismo , Sítios de Ligação , Alanina , Ácidos Cetoglutáricos/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(2): e2316540120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170751

RESUMO

How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using 6-wk-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni, ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within 2 to 3 d of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP, which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter (lctP) led to identification of a putative thiol-based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides better insights into the pathogenicity of C. jejuni.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Animais , Humanos , Camundongos , Ácido Láctico/metabolismo , Campylobacter jejuni/genética , Furões , Transportadores de Ácidos Monocarboxílicos
3.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873437

RESUMO

How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using six-week-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni , ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within two-three days of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP , which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter ( lctP ) led to discovery of a putative thiol based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides new insights into the pathogenicity of C. jejuni . Significance: There is a gap in knowledge about the mechanisms by which C. jejuni populations expand during infection. Using an animal model which accurately reflects human infection without the need to alter the host microbiome or the immune system prior to infection, we explored pathophysiological alterations of the gut after C. jejuni infection. Our study identified the gut metabolite L-lactate as playing an important role as a growth substrate for C. jejuni during acute infection. We identified a DNA binding protein, LctR, that binds to the lctP promoter and may repress lctP expression, resulting in decreased lactate transport under low oxygen levels. This work provides new insights about C. jejuni pathogenicity.

4.
Biochemistry ; 62(21): 3096-3104, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37831946

RESUMO

LarB catalyzes the first step of biosynthesis for the nickel-pincer nucleotide cofactor by converting nicotinic acid adenine dinucleotide (NaAD) to AMP and pyridinium-3,5-biscarboxylic acid mononucleotide (P2CMN). Prior studies had shown that LarB uses CO2 for substrate carboxylation and reported the structure of a Lactiplantibacillus plantarum LarB·NAD+ complex, revealing a covalent linkage between Cys221 and C4 of the pyridine ring. This interaction was proposed to promote C5 carboxylation, with C5-carboxylated-NaAD suggested to activate magnesium-bound water, leading to phosphoanhydride hydrolysis. Here, we extended the analysis of wild-type LarB by using ultraviolet-visible spectroscopy to obtain additional evidence for cysteinyl side chain attachment to the ring of NAD+, thus demonstrating that this linkage is not a crystallization artifact. Using the S127A variant of L. plantarum LarB, a form of the enzyme with a reduced rate of NaAD hydrolysis, we examined its interaction with the authentic substrate. The intermediate arising from C5 carboxylation of NaAD, dinicotinic acid adenine dinucleotide (DaAD), was identified by using mass spectrometry. S127A LarB exhibited spectroscopic evidence of a Cys221-NAD+ adduct, but a covalent enzyme-NaAD linkage was not detectable. We determined the S127A LarB·NaAD structure, providing new insights into the enzyme mechanism, and tentatively identified the position and mode of CO2 binding. The crystal structure revealed the location of the side chain for Glu180, which was previously disordered, but showed that it is not well positioned to abstract the C5 proton in the adduct species to restore aromaticity as Cys221 is expelled. Based on these combined results, we propose a revised catalytic mechanism of LarB..


Assuntos
NAD , Níquel , NAD/metabolismo , Níquel/química , Dióxido de Carbono , Nucleotídeos/metabolismo , Catálise , Cristalografia por Raios X
5.
RSC Chem Biol ; 4(9): 635-646, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37654506

RESUMO

This review summarizes the structures, biochemical properties, and mechanisms of two major biological sources of ethylene, the ethylene-forming enzyme (EFE) and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO). EFE is found in selected bacteria and fungi where it catalyzes two reactions: (1) the oxygen-dependent conversion of 2-oxoglutarate (2OG) to ethylene plus three molecules of CO2/bicarbonate and (2) the oxidative decarboxylation of 2OG while transforming l-arginine to guanidine and l-Δ1-pyrroline-5-carboxylic acid. ACCO is present in plants where it makes the plant hormone by transforming ACC, O2, and an external reductant to ethylene, HCN, CO2, and water. Despite catalyzing distinct chemical reactions, EFE and ACCO are related in sequence and structure, and both enzymes require Fe(ii) for their activity. Advances in our understanding of EFE, derived from both experimental and computational approaches, have clarified how this enzyme catalyzes its dual reactions. Drawing on the published mechanistic studies of ACCO and noting the parallels between this enzyme and EFE, we propose a novel reaction mechanism for ACCO.

6.
Crit Rev Biochem Mol Biol ; 57(5-6): 461-476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36403141

RESUMO

Sulfur is an essential element for a variety of cellular constituents in all living organisms and adds considerable functionality to a wide range of biomolecules. The pathways for incorporating sulfur into central metabolites of the cell such as cysteine, methionine, cystathionine, and homocysteine have long been established. Furthermore, the importance of persulfide intermediates during the biosynthesis of thionucleotide-containing tRNAs, iron-sulfur clusters, thiamin diphosphate, and the molybdenum cofactor are well known. This review briefly surveys these topics while emphasizing more recent aspects of sulfur metabolism that involve unconventional biosynthetic pathways. Sacrificial sulfur transfers from protein cysteinyl side chains to precursors of thiamin and the nickel-pincer nucleotide (NPN) cofactor are described. Newer aspects of synthesis for lipoic acid, biotin, and other compounds are summarized, focusing on the requisite iron-sulfur cluster destruction. Sulfur transfers by using a noncore sulfide ligand bound to a [4Fe-4S] cluster are highlighted for generating certain thioamides and for alternative biosynthetic pathways of thionucleotides and the NPN cofactor. Thioamide formation by activating an amide oxygen atom via phosphorylation also is illustrated. The discussion of these topics stresses the chemical reaction mechanisms of the transformations and generally avoids comments on the gene/protein nomenclature or the sources of the enzymes. This work sets the stage for future efforts to decipher the diverse mechanisms of sulfur incorporation into biological molecules.


Assuntos
Coenzimas , Enxofre , Enxofre/metabolismo , Coenzimas/metabolismo , Tiamina , Ferro/química
7.
Biochem Soc Trans ; 50(4): 1187-1196, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35960008

RESUMO

The nickel-pincer nucleotide (NPN) coenzyme, a substituted pyridinium mononucleotide that tri-coordinates nickel, was first identified covalently attached to a lysine residue in the LarA protein of lactate racemase. Starting from nicotinic acid adenine dinucleotide, LarB carboxylates C5 of the pyridinium ring and hydrolyzes the phosphoanhydride, LarE converts the C3 and C5 carboxylates to thiocarboxylates, and LarC incorporates nickel to form a C-Ni and two S-Ni bonds, during the biosynthesis of this cofactor. LarB uses a novel carboxylation mechanism involving the transient formation of a cysteinyl-pyridinium adduct. Depending on the source of the enzyme, LarEs either catalyze a sacrificial sulfur transfer from a cysteinyl side chain resulting in the formation of dehydroalanine or they utilize a [4Fe-4S] cluster bound by three cysteine residues to accept and transfer a non-core sulfide atom. LarC is a CTP-dependent enzyme that cytidinylylates its substrate, adds nickel, then hydrolyzes the product to release NPN and CMP. Homologs of the four lar genes are widely distributed in microorganisms, with some species containing multiple copies of larA whereas others lack this gene, consistent with the cofactor serving other functions. Several LarA-like proteins were shown to catalyze racemase or epimerase activities using 2-hydroxyacid substrates other than lactic acid. Thus, lactate racemase is the founding member of a large family of NPN-containing enzymes.


Assuntos
Lactobacillus plantarum , Níquel , Coenzimas/química , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Níquel/química , Níquel/metabolismo , Nucleotídeos/metabolismo , Enxofre/metabolismo
8.
J Biol Chem ; 298(7): 102131, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35700827

RESUMO

Sulfur-insertion reactions are essential for the biosynthesis of several cellular metabolites, including enzyme cofactors. In Lactobacillus plantarum, a sulfur-containing nickel-pincer nucleotide (NPN) cofactor is used as a coenzyme of lactic acid racemase, LarA. During NPN biosynthesis in L. plantarum, sulfur is transferred to a nicotinic acid-derived substrate by LarE, which sacrifices the sulfur atom of its single cysteinyl side chain, forming a dehydroalanine residue. Most LarE homologs contain three conserved cysteine residues that are predicted to cluster at the active site; however, the function of this cysteine cluster is unclear. In this study, we characterized LarE from Thermotoga maritima (LarETm) and show that it uses these three conserved cysteine residues to bind a [4Fe-4S] cluster that is required for sulfur transfer. Notably, we found LarETm retains all side chain sulfur atoms, in contrast to LarELp. We also demonstrate that when provided with L-cysteine and cysteine desulfurase from Escherichia coli (IscSEc), LarETm functions catalytically with IscSEc transferring sulfane sulfur atoms to LarETm. Native mass spectrometry results are consistent with a model wherein the enzyme coordinates sulfide at the nonligated iron atom of the [4Fe-4S] cluster, forming a [4Fe-5S] species, and transferring the noncore sulfide to the activated substrate. This proposed mechanism is like that of TtuA that catalyzes sulfur transfer during 2-thiouridine synthesis. In conclusion, we found that LarE sulfur insertases associated with NPN biosynthesis function either by sacrificial sulfur transfer from the protein or by transfer of a noncore sulfide bound to a [4Fe-4S] cluster.


Assuntos
Proteínas Ferro-Enxofre , Thermotoga maritima , Coenzimas/metabolismo , Cisteína/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Níquel/metabolismo , Nucleotídeos/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548397

RESUMO

Enzymes possessing the nickel-pincer nucleotide (NPN) cofactor catalyze C2 racemization or epimerization reactions of α-hydroxyacid substrates. LarB initiates synthesis of the NPN cofactor from nicotinic acid adenine dinucleotide (NaAD) by performing dual reactions: pyridinium ring C5 carboxylation and phosphoanhydride hydrolysis. Here, we show that LarB uses carbon dioxide, not bicarbonate, as the substrate for carboxylation and activates water for hydrolytic attack on the AMP-associated phosphate of C5-carboxylated-NaAD. Structural investigations show that LarB has an N-terminal domain of unique fold and a C-terminal domain homologous to aminoimidazole ribonucleotide carboxylase/mutase (PurE). Like PurE, LarB is octameric with four active sites located at subunit interfaces. The complex of LarB with NAD+, an analog of NaAD, reveals the formation of a covalent adduct between the active site Cys221 and C4 of NAD+, resulting in a boat-shaped dearomatized pyridine ring. The formation of such an intermediate with NaAD would enhance the reactivity of C5 to facilitate carboxylation. Glu180 is well positioned to abstract the C5 proton, restoring aromaticity as Cys221 is expelled. The structure of as-isolated LarB and its complexes with NAD+ and the product AMP identify additional residues potentially important for substrate binding and catalysis. In combination with these findings, the results from structure-guided mutagenesis studies lead us to propose enzymatic mechanisms for both the carboxylation and hydrolysis reactions of LarB that are distinct from that of PurE.


Assuntos
Cisteína/química , Hidrolases/metabolismo , Lactobacillus plantarum/enzimologia , Níquel/metabolismo , Nucleotídeos/biossíntese , Piridinas/química , Racemases e Epimerases/metabolismo , Carboxiliases , Catálise , Cristalografia por Raios X , Hidrolases/química , Hidrólise , Modelos Moleculares , Conformação Proteica , Racemases e Epimerases/química , Especificidade por Substrato
10.
Biochem Biophys Res Commun ; 523(2): 348-353, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31866010

RESUMO

Protein cages have recently emerged as an extraordinary drug-delivery system due to its biocompatibility, biodegradability, low toxicity, ease to manipulate and engineer. We have reported earlier the formation and architecture of a do-decameric cage-like architecture of Vibrio cholerae acylphosphatase (VcAcP) at 3.1 Å. High resolution (2.4 Å) crystal structure of VcAcP cage, reported here, illuminates a potential binding site for sulphate/phosphate containing drugs whereas analysis of its subunit association and interfaces indicates high potential for cage engineering. Tryptophan quenching studies indeed discloses noteworthy binding with various sulphate/phosphate containing nucleotide-based drugs and vitamin B6 (PLP) demonstrating that exterior surface of VcAcP protein cage can be exploited as multifunctional carrier. Moreover, a quadruple mutant L30C/T68C/N40C/L81C-VcAcP (QM-VcAcP) capable to form an intricate disulphide bonded VcAcP cage has been designed. SEC, SDS-PAGE analysis and DLS experiment confirmed cysteine mediated engineered VcAcP cage formation.


Assuntos
Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Vibrio cholerae/enzimologia , Hidrolases Anidrido Ácido/genética , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cromatografia em Gel , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Difusão Dinâmica da Luz , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Engenharia de Proteínas , Estrutura Quaternária de Proteína , Vibrio cholerae/genética , Acilfosfatase
11.
Biochim Biophys Acta Proteins Proteom ; 1867(2): 114-124, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30447286

RESUMO

Low molecular weight protein tyrosine phosphatases (LMWPTPs) are ubiquitously found as small cytoplasmic enzymes which act on phospho-tyrosine containing proteins that are engaged in various cellular functions. Vibrio cholerae O395 contains two LMWPTPs having widely different sequence. Phylogenetic analysis based on a non redundant set of 124 LMWPTP sequences, designate that LMWPTP-2 from Vibrio choleraeO395 (VcLMWPTP-2) is a single taxon. We have determined the crystal structure of VcLMWPTP-2 at 2.6 Šwith MOPS bound in the active site. Tertiary structure analysis indicates that VcLMWPTP-2 forms dimer. Studies in solution state also confirm exclusive presence of a dimeric form. Kinetic studies demonstrate that VcLMWPTP-2 dimer is catalytically active while inactivation through oligomerisation was reported as one of the regulatory mechanism in case of mammalian LMWPTP viz., Bos taurus LMWPTP, BPTP. Kinetic studies using p-nitrophenyl phosphate (p-NPP) as a substrate demonstrate active participation of both the P-loop cysteine in catalysis. Vicinal Cys17, in addition plays a role of protecting the catalytic Cys12 under oxidative stress. Structural analysis and MD simulations allowed us to propose the role of several conserved residues around the active site. Distribution of surface charges and grooves around the active site delineates unique features of VcLMWPTP-2 which could be utilized to design specific inhibitor.


Assuntos
Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Vibrio cholerae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Catálise , Domínio Catalítico/fisiologia , Cristalografia por Raios X/métodos , Cinética , Proteínas de Membrana/química , Modelos Moleculares , Peso Molecular , Filogenia , Ligação Proteica/fisiologia , Proteínas Tirosina Fosfatases/ultraestrutura , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/fisiologia , Vibrio cholerae/química , Vibrio cholerae/genética
12.
Sci Rep ; 8(1): 16925, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446722

RESUMO

Fructokinase (FRK) catalyzes the first step of fructose metabolism i.e., D-fructose to D-fructose-6-phosphate (F6P), however, the mechanistic insights of this reaction are elusive yet. Here we demonstrate that the putative Vibrio cholerae fructokinase (VcFRK) exhibit strong fructose-6-kinase activity allosterically modulated by K+/Cs+. We have determined the crystal structures of apo-VcFRK and its complex with fructose, fructose-ADP-Ca2+, fructose-ADP-Ca2+-BeF3-. Collectively, we propose the catalytic mechanism and allosteric activation of VcFRK in atomistic details explaining why K+/Cs+ are better activator than Na+. Structural results suggest that apo VcFRK allows entry of fructose in the active site, sequester it through several conserved H-bonds and attains a closed form through large scale conformational changes. A double mutant (H108C/T261C-VcFRK), that arrests the closed form but unable to reopen for F6P release, is catalytically impotent highlighting the essentiality of this conformational change. Negative charge accumulation around ATP upon fructose binding, is presumed to redirect the γ-phosphate towards fructose for efficient phosphotransfer. Reduced phosphotransfer rate of the mutants E205Q and E110Q supports this view. Atomic resolution structure of VcFRK-fructose-ADP-Ca2+-BeF3-, reported first time for any sugar kinase, suggests that BeF3- moiety alongwith R176, Ca2+ and 'anion hole' limit the conformational space for γ-phosphate favoring in-line phospho-transfer.


Assuntos
Frutoquinases/química , Frutoquinases/metabolismo , Modelos Moleculares , Conformação Molecular , Açúcares/química , Açúcares/metabolismo , Vibrio cholerae/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Domínio Catalítico , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...