Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Public Aff ; : e2828, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35942246

RESUMO

We examine the effect of testing and social distancing measures on the severity of COVID19 across Indian states during the 68th day nationwide lockdown period. We also explore whether pre-existing socio-economic factors such as quality of health care and the ability to practice social distancing influences the effect of these policy measures across states. Using daily level data between April 1 and May 31 for 18 of the major states, we find that both testing and social distancing have a negative effect on COVID-19 fatalities in India. Further, testing is more helpful in reducing CFR for states with lower per capita health expenditure and weaker medical infrastructure. This highlights how ramping up testing can aid states that have a weak health care system through the detection of infection, contact tracing and isolation. In contrast, social distancing measures are more effective in states that are less populous and have lesser people dwelling in single-room houses. Our results confirm the role of pre-existing institutional factors in shaping the effect of policy actions on health outcomes.

2.
Biomacromolecules ; 19(11): 4430-4441, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30350598

RESUMO

A new family of cellulosic ether polymeric excipients has been recently engineered for fabrication of amorphous solid dispersions of active pharmaceutical ingredients via hot-melt extrusion (HME). These hydroxypropyl methyl cellulose excipients enable plasticizer-free melt processing at much lower temperatures (135-160 °C) due to their substantially reduced glass transition temperatures ( Tg = 98-110 °C). The novel amorphous cellulose ethers were found to be rheologically solidlike well above their glass transition ( Tg + 70 °C). We demonstrate that in the pharmaceutically relevant HME processing temperature range these polymers behave similarly to yield-stress fluids and flow only when the applied stress exceeds a critical stress value. This critical stress value (0.50 ± 0.05 MPa, 150 °C) is surprisingly high but is easily achieved under typical HME conditions. The origin of their yield-stress fluidlike behavior is hypothesized to arise from hydrogen bonds of the HPMC materials that act as physical cross-links and do not relax within the measured temperature and time window unless the applied stress exceeds the critical stress value. Support for this hypothesis arises from infrared spectroscopic estimates of the free and bound hydrogen bond levels at end-use temperatures.


Assuntos
Celulose/química , Portadores de Fármacos/química , Éter/química , Excipientes/química , Temperatura Alta , Plastificantes/química , Polímeros/química , Preparações Farmacêuticas/química , Reologia
3.
Langmuir ; 34(37): 10993-11002, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30142976

RESUMO

Hydrophobically modified ethoxylated urethane (HEUR) thickeners are widely used as rheology modifiers for waterborne paints. Although the rheology of HEUR solutions in water is fairly well-understood, their impact on the rheology of waterborne latex/pigment suspensions (formulated paints) is more complicated. We study the shear rheology of model HEUR/latex/TiO2 suspensions in water and investigate the dependence of both oscillatory and steady shear behaviors on the strength of the HEUR hydrophobes. We observe that in both oscillatory and steady shear experiments, rheological curves could be shifted onto a single master curve, demonstrating a "time-hydrophobe superposition". We also note that the oscillatory shear behavior exhibits a power-law spectrum of relaxation times, unlike the single-Maxwellian behavior of pure HEUR solutions. On the basis of these results and earlier experimental and theoretical findings, we propose that the rheology of the HEUR-thickened latex/TiO2 suspensions is mainly determined by the transient network of HEUR-bridged latex particles, with a broad distribution of the characteristic lifetimes of the bridge. The model is found to be in good qualitative and semiquantitative agreement with the experiments for both steady shear and oscillatory shear.

4.
ACS Macro Lett ; 6(7): 716-720, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35650876

RESUMO

Hydrophobically modified ethylene oxide urethane (HEUR) associative thickeners are widely used to modify the rheology of waterborne paints. Understanding the normal stress behavior of the HEUR-based paints under high shear is critical for many applications such as brush drag and spreading. We observed that the first normal stress difference, N1, at high shear (large Weissenberg number) can be positive or negative depending on the HEUR hydrophobe strength and concentration. We propose that the algebraic sign of the N1 is primarily controlled by two factors: (a) adsorption of HEURs on the latex surface and (b) the ability of HEURs to form transient molecular bridges between latex particles. Such transient bridges are favored for dispersions with small interparticle distances and dense surface coverages; in these systems; HEUR-bridged latex microstructures flow-align in high shear and exhibit positive N1. In the absence of transient bridges (large interparticle distances, low surface coverage), the dispersion rheology is similar to that of weakly interacting spheres, exhibiting negative N1. The results are summarized in a simplified phase diagram connecting formulation, microstructure, and the N1 behavior.

5.
J Chromatogr A ; 1475: 41-54, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27838000

RESUMO

A fundamental study of the separation of homopolymers from polystyrene-block-polymethylmethacrylate (PS-b-PMMA) by liquid chromatography with preloaded discrete and continuous adsorption promoting barriers was performed. The impact of barrier composition on the separation of block copolymers (BCP) was studied by a dual detection (ultraviolet (UV) and evaporated light scattering (ELSD) detectors) system that enabled monitoring both barrier composition and BCP separation simultaneously. The separation of homopolymers from BCP by preloaded discrete adsorption promoting barriers was validated via a series of control experiments by blending known amounts of homopolymers PS or PMMA with PS-b-PMMA, and the resulting chromatograms were free from co-elution of homopolymers and BCP. Quantitation of homopolymers and BCP by ELSD was also demonstrated. The influence of BCP chemical composition on the separation by preloaded discrete adsorption promoting barriers was investigated. Results showed a PS-b-PMMA having 90wt% PMMA co-eluted with homopolymer PMMA, whereas PS-b-PMMA samples having lower amounts of PMMA block could be separated from homopolymer PMMA, successfully. Attempts at using a preloaded solvent gradient for separating homopolymers from block copolymers were unsuccessful. UV detection of the solvent gradient revealed significant deviation in solvent composition compared to the nominally loaded gradient. This deviation was due to the interaction of strong desorption solvent with column stationary phase. As such, the barrier composition in the preloaded gradient method was not as expected. Therefore, one can obtain undesired separation results by preloaded solvent gradients.


Assuntos
Cromatografia Líquida de Alta Pressão , Metacrilatos/isolamento & purificação , Poliestirenos/isolamento & purificação , Adsorção , Metacrilatos/química , Poliestirenos/química , Solventes/química
6.
J Chromatogr A ; 1465: 107-16, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27590085

RESUMO

Recent advances in catalyst technology have enabled the synthesis of olefin block copolymers (OBC). One type is a "hard-soft" OBC with a high density polyethylene (HDPE) block and a relatively low density polyethylene (VLDPE) block targeted as thermoplastic elastomers. Presently, one of the major challenges is to fractionate HDPE segments from the other components in an experimental OBC sample (block copolymers and VLDPE segments). Interactive high temperature liquid chromatography (HTLC) is ineffective for OBC separation as the HDPE segments and block copolymer chains experience nearly identical enthalpic interactions with the stationary phase and co-elute. In this work we have overcome this challenge by using liquid chromatography under the limiting conditions of desorption (LC LCD). A solvent plug (discrete barrier) is introduced in front of the sample which specifically promotes the adsorption of HDPE segments on the stationary phase (porous graphitic carbon). Under selected thermodynamic conditions, VLDPE segments and block copolymer chains crossed the barrier while HDPE segments followed the pore-included barrier solvent and thus enabled separation. The barrier solvent composition was optimized and the chemical composition of fractionated polymer chains was investigated as a function of barrier solvent strength using an online Fourier-transform infrared (FTIR) detector. Our study revealed that both the HDPE segments as well as asymmetric block copolymer chains (HDPE block length≫VLDPE block length) are retained in the separation and the barrier strength can be tailored to retain a particular composition. At the optimum barrier solvent composition, this method can be applied to separate effective HDPE segments from the other components, which has been demonstrated using an experimental OBC sample.


Assuntos
Cromatografia Líquida de Alta Pressão , Polietileno/química , Polímeros/química , Solventes/química , Adsorção , Alcenos/química , Polietileno/isolamento & purificação , Polímeros/isolamento & purificação , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
7.
Faraday Discuss ; 186: 311-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26818578

RESUMO

The structure of aqueous dispersions of poly(oligo(ethylene oxide) monomethyl methacrylate)-grafted silica nanoparticles was characterized using contrast variation small-angle neutron scattering studies. Modeling the low hybrid concentration dispersion scattering data using a fuzzy sphere and a polydisperse core-shell model, demonstrated that the polymer chains are highly swollen in the dispersions as compared to the dimensions of the free polymer chains in dilute solution. At higher hybrid concentrations, the dispersions were well described using a Percus-Yevick approximation to describe the structure factor. These structural characterization tools are excellent starting points for effective molecular level descriptors of dewetting and macroscopic phase transitions for polymer tethered hybrid nanoparticle systems.

8.
Rev Sci Instrum ; 84(8): 085109, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24007109

RESUMO

Driven by recent interest in the low-frequency Debye-like relaxations in hydrogen bonding liquids, here we present an alternative method for measuring such relaxations without the detrimental effects of ionic conductivity or electrode polarization. Glycerol was chosen as a molecule of interest, and a fit for the α-transition using the Vogel-Fulcher-Tammann equation was found to be τ = 2.31 × 10(-14) exp(2110 K∕[T-135 K]). This method is easily adaptable by most laboratories with existing dielectric spectrometers, and could prove useful in the accurate measurement of relaxations in conductive media at low frequencies. A brief summary of comparable techniques is also presented.

9.
Soft Matter ; 9(40): 9515-29, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26029757

RESUMO

In this review paper the rheology of polymer nanocomposites with dispersed carbon nanotubes is presented. The major factors controlling the rheology of these nanocomposites are the overall concentration of the nanotubes and their state of dispersion. Percolation of anisotropic nanotubes and the transition from isotropic to nematic structures bound the range of concentrations over which the rheological properties of these nanocomposites is dominated by the meso-scale structure and dispersion and are of significance to the processing of nanotube based polymer nanocomposites. The percolation threshold and the concentration for the isotropic to nematic transition are strong functions of the inverse of the effective aspect ratio of the dispersed nanotubes and therefore restrict the range of concentrations over which such nanocomposites can be deployed. In this review we briefly describe the rheology in the dilute regime, where especially for the case of polymer nanocomposites the rheology is dominated by that of the polymer. Subsequently, the percolation phenomenon and rheological significances are presented. Finally, both linear and non-linear rheologies of semi-dilute dispersions with random orientation of nanotubes are discussed in detail. Where possible, the rheological responses are contextualized through the underlying structure of the nanocomposites and interplay of different forces.

10.
Biomacromolecules ; 13(10): 3355-69, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22994294

RESUMO

Cold, semidilute, aqueous solutions of methylcellulose (MC) are known to undergo thermoreversible gelation when warmed. This study focuses on two MC materials with much different gelation performance (gel temperature and hot gel modulus) even though they have similar metrics of their coarse-grained chemical structure (degree-of-methylether substitution and molecular weight distribution). Small-angle neutron scattering (SANS) experiments were conducted to probe the structure of the aqueous MC materials at pre- and postgel temperatures. One material (MC1, higher gel temperature) exhibited a single almost temperature-insensitive gel characteristic length scale (ζ(c) = 1090 ± 50 Å) at postgelation temperatures. This length scale is thought to be the gel blob size between network junctions. It also coincides with the length scale between entanglement sites measured with rheology studies at pregel temperatures. The other material (MC2, lower gel temperature) exhibited two distinct length scales at all temperatures. The larger length scale decreased as temperature increased. Its value (ζ(c1) = 1046 ± 19 Å) at the lowest pregel temperature was indistinguishable from that measured for MC1, and reached a limiting value (ζ(c1) = 450 ± 19 Å) at high temperature. The smaller length scale (ζ(c2) = 120 to 240 Å) increased slightly as temperature increased, but remained on the order of the chain persistence length (130 Å) measured at pregel temperatures. The smaller blob size (ζ(c1)) of MC2 suggests a higher bond energy or a stiffer connectivity between network junctions. Moreover, the number density of these blobs, at the same reduced temperature with respect to the gel temperature, is orders of magnitude higher for the MC2 gels. Presumably, the smaller gel length scale and higher number density lead to higher hot gel modulus for the low gel temperature material.


Assuntos
Metilcelulose/química , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Géis/química , Estrutura Molecular , Reologia , Temperatura , Água/química
11.
J Am Chem Soc ; 133(21): 8380-7, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21548560

RESUMO

Conjugated oligoelectrolytes are of emerging technological interest due to their recent function in the fabrication of optoelectronic devices, application in biosensors, and as species that facilitate transmembrane charge migration. Solubility in aqueous, or highly polar, solvents is important for many of these applications; however, there are few studies on how the self-assembly of conjugated oligoelectrolytes into multichromophore species influences linear and nonlinear optical properties. Here, we examine 1,4-bis(4'-(N,N-bis(6''-(N,N,N-trimethylammonium)hexyl)amino)-styryl)benzene tetraiodide (DSBNI) in water, a conjugated oligoelectrolyte based on the distyrylbenzene framework. We find that DSBNI aggregation leads to increased fluorescence lifetimes, coupled with hypsochromic shifts, and larger two-photon absorption cross sections. Liquid atomic force microscopy (AFM) and cryogenic transmission electron microscopy (cryo-TEM) were used to image DSBNI aggregates and to confirm that the planar molecules stack to form nanocylinders above a critical aggregation concentration. Finally, small-angle neutron scattering (SANS) was used to quantify the aggregate dimensions in situ. Comparison of the results highlights that the hydrophilic mica surface used to image via liquid AFM and the high concentrations required for cryo-TEM facilitate the propagation of the cylinders into long fibers. SANS experiments are consistent with equivalent molecular packing geometry but lower aspect ratios. It is therefore possible to understand the evolution of optical properties as a function of concentration and aggregation and the general geometric features of the resulting supramolecular structures.

12.
J Am Chem Soc ; 130(22): 6934-5, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18465852

RESUMO

The hierarchical structure of semidilute suspensions of single-walled carbon nanotubes in polymeric matrices, studied by the use of ultrasmall and small angle neutron scattering, indicates an aggregate size that is independent on both nanotube concentration and polymer matrix and a mesh within the floc that becomes slightly denser with increasing nanotube concentration. The number of clusters grows linearly with concentration of nanotubes. These structural parameters suggest that the interactions between the flocs dictate the concentration-dependent elastic strength scaling of the network, with the absolute values of the specific elastic strength being inversely related to the percolation threshold.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(5 Pt 1): 050403, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17677011

RESUMO

Dispersions of single walled carbon nanotubes (SWNTs), with an effective aspect ratio of approximately 650 , in poly(ethylene oxide) (PEO) form fractal superstructures above their geometrical percolation and display rheological properties that follow time-temperature-composition-strain superpositioning. The concentration dependences of the elastic modulus of the network and the onset-strain for shear thinning are consistent with the short-range nature of the interactions that dominate these dispersions. The strain dependence of the damping behavior for the nanocomposites shows concentration invariance when represented against the local strain experienced by the network element, with the onset occurring at a local strain value of 0.1, similar to other nanocomposite systems dominated by weak interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...