Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 379, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720284

RESUMO

BACKGROUND: Rice bean (Vigna umbellata), an underrated legume, adapts to diverse climatic conditions with the potential to support food and nutritional security worldwide. It is used as a vegetable, minor food crop and a fodder crop, being a rich source of proteins, minerals, and essential fatty acids. However, little effort has been made to decipher the genetic and molecular basis of various useful traits in this crop. Therefore, we considered three economically important traits i.e., flowering, maturity and seed weight of rice bean and identified the associated candidate genes employing an associative transcriptomics approach on 100 diverse genotypes out of 1800 evaluated rice bean accessions from the Indian National Genebank. RESULTS: The transcriptomics-based genotyping of one-hundred diverse rice bean cultivars followed by pre-processing of genotypic data resulted in 49,271 filtered markers. The STRUCTURE, PCA and Neighbor-Joining clustering of 100 genotypes revealed three putative sub-populations. The marker-trait association analysis involving various genome-wide association study (GWAS) models revealed significant association of 82 markers on 48 transcripts for flowering, 26 markers on 22 transcripts for maturity and 22 markers on 21 transcripts for seed weight. The transcript annotation provided information on the putative candidate genes for the considered traits. The candidate genes identified for flowering include HSC80, P-II PsbX, phospholipid-transporting-ATPase-9, pectin-acetylesterase-8 and E3-ubiquitin-protein-ligase-RHG1A. Further, the WRKY1 and DEAD-box-RH27 were found to be associated with seed weight. Furthermore, the associations of PIF3 and pentatricopeptide-repeat-containing-gene with maturity and seed weight, and aldo-keto-reductase with flowering and maturity were revealed. CONCLUSION: This study offers insights into the genetic basis of key agronomic traits in rice bean, including flowering, maturity, and seed weight. The identified markers and associated candidate genes provide valuable resources for future exploration and targeted breeding, aiming to enhance the agronomic performance of rice bean cultivars. Notably, this research represents the first transcriptome-wide association study in pulse crop, uncovering the candidate genes for agronomically useful traits.


Assuntos
Flores , Estudo de Associação Genômica Ampla , Sementes , Transcriptoma , Sementes/genética , Sementes/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Vigna/genética , Vigna/crescimento & desenvolvimento , Genes de Plantas , Genótipo , Perfilação da Expressão Gênica , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Fenótipo
2.
Plant Physiol Biochem ; 211: 108601, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38696867

RESUMO

Neurotransmitters are naturally found in many plants, but the molecular processes that govern their actions still need to be better understood. Acetylcholine, γ-Aminobutyric acid, histamine, melatonin, serotonin, and glutamate are the most common neurotransmitters in animals, and they all play a part in the development and information processing. It is worth noting that all these chemicals have been found in plants. Although much emphasis has been placed on understanding how neurotransmitters regulate mood and behaviour in humans, little is known about how they regulate plant growth and development. In this article, the information was reviewed and updated considering current thinking on neurotransmitter signaling in plants' metabolism, growth, development, salt tolerance, and the associated avenues for underlying research. The goal of this study is to advance neurotransmitter signaling research in plant biology, especially in the area of salt stress physiology.

3.
DNA Res ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702947

RESUMO

Genetic diversity and environmental factors are long believed to be the dominant contributor to phenotypic diversity in crop plants. However, it has been recently established that, besides genetic variation, epigenetic variation, especially variation in DNA methylation, plays a significant role in determining phenotypic diversity in crop plants. Therefore, assessing DNA methylation diversity in crop plants becomes vital, especially in the case of crops like chickpea, which has a narrow genetic base. Thus, in the present study, we employed whole-genome bisulfite sequencing to assess DNA methylation diversity in wild and cultivated (desi and kabuli) chickpea. This revealed extensive DNA methylation diversity in both wild and cultivated chickpea. Interestingly, the methylation diversity was found to be significantly higher than genetic diversity, suggesting its potential role in providing vital phenotypic diversity for the evolution and domestication of the Cicer gene pool. The phylogeny based on DNA methylation variation also indicates a potential complementary role of DNA methylation variation in addition to DNA sequence variation in shaping chickpea evolution. Besides, the study also identified diverse epi-alleles of many previously known genes of agronomic importance. The Cicer MethVarMap database developed in this study enables researchers to readily visualize methylation variation within the genes and genomic regions of their interest (http://223.31.159.7/cicer/public/). Therefore, epigenetic variation like DNA methylation variation can potentially explain the paradox of high phenotypic diversity despite the narrow genetic base in chickpea and can potentially be employed for crop improvement.

4.
J Exp Bot ; 75(2): 642-657, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37158162

RESUMO

Lateral roots are a major component of root system architecture, and lateral root count (LRC) positively contributes to yield under drought in chickpea. To understand the genetic regulation of LRC, a biparental mapping population derived from two chickpea accessions having contrasting LRCs was genotyped by sequencing, and phenotyped to map four major quantitative trait loci (QTLs) contributing to 13-32% of the LRC trait variation. A single- nucleotide polymorphism tightly linked to the locus contributing to highest trait variation was located on the coding region of a gene (CaWIP2), orthologous to NO TRANSMITTING TRACT/WIP domain protein 2 (NTT/WIP2) gene of Arabidopsis thaliana. A polymorphic simple sequence repeat (SSR) in the CaWIP2 promoter showed differentiation between low versus high LRC parents and mapping individuals, suggesting its utility for marker-assisted selection. CaWIP2 promoter showed strong expression in chickpea apical root meristem and lateral root primordia. Expression of CaWIP2 under its native promoter in the Arabidopsis wip2wip4wip5 mutant rescued its rootless phenotype to produce more lateral roots than the wild-type plants, and led to formation of amyloplasts in the columella. CaWIP2 expression also induced the expression of genes that regulate lateral root emergence. Our study identified a gene-based marker for LRC which will be useful for developing drought-tolerant, high-yielding chickpea varieties.


Assuntos
Cicer , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cicer/genética , Genótipo , Marcadores Genéticos
5.
Plant Cell Environ ; 46(11): 3501-3517, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37427826

RESUMO

Plants deposit lignin in the secondary cell wall as a common response to drought and pathogen attacks. Cell wall localised multicopper oxidase family enzymes LACCASES (LACs) catalyse the formation of monolignol radicals and facilitate lignin formation. We show an upregulation of the expression of several LAC genes and a downregulation of microRNA397 (CamiR397) in response to natural drought in chickpea roots. CamiR397 was found to target LAC4 and LAC17L out of twenty annotated LACs in chickpea. CamiR397 and its target genes are expressed in the root. Overexpression of CamiR397 reduced expression of LAC4 and LAC17L and lignin deposition in chickpea root xylem causing reduction in xylem wall thickness. Downregulation of CamiR397 activity by expressing a short tandem target mimic (STTM397) construct increased root lignin deposition in chickpea. CamiR397-overexpressing and STTM397 chickpea lines showed sensitivity and tolerance, respectively, towards natural drought. Infection with a fungal pathogen Macrophomina phaseolina, responsible for dry root rot (DRR) disease in chickpea, induced local lignin deposition and LAC gene expression. CamiR397-overexpressing and STTM397 chickpea lines showed more sensitivity and tolerance, respectively, to DRR. Our results demonstrated the regulatory role of CamiR397 in root lignification during drought and DRR in an agriculturally important crop chickpea.

7.
Protoplasma ; 260(5): 1437-1451, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37131068

RESUMO

Chickpea is considered recalcitrant to in vitro tissue culture amongst all edible legumes. The clustered, regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-based genome editing in chickpea can remove the bottleneck of limited genetic variation in this cash crop, which is rich in nutrients and protein. However, generating stable mutant lines using CRISPR/Cas9 requires efficient and highly reproducible transformation protocols. As an attempt to solve this problem, we developed a modified and optimized protocol for chickpea transformation. This study transformed the single cotyledon half-embryo explants using CaMV35S promoter to drive two marker genes (ß-glucuronidase gene; GUS and green fluorescent protein; GFP) through binary vectors pBI101.2 and modified pGWB2, respectively. These vectors were delivered in the explants through three different strains of Agrobacterium tumefaciens, viz., GV3101, EHA105, and LBA4404. We found better efficiency with the strain GV3101 (17.56%) compared with two other strains, i.e., 8.54 and 5.43%, respectively. We recorded better regeneration frequencies in plant tissue culture for the constructs GUS and GFP, i.e., 20.54% and 18.09%, respectively. The GV3101 was further used for the transformation of the genome editing construct. For the development of genome-edited plants, we used this modified protocol. We also used a modified binary vector pPZP200 by introducing a CaMV35S-driven chickpea codon-optimized SpCas9 gene. The promoter of the Medicago truncatula U6.1 snRNA gene was used to drive the guide RNA cassettes. This cassette targeted and edited the chickpea phytoene desaturase (CaPDS) gene. A single gRNA was found sufficient to achieve high efficiency (42%) editing with the generation of PDS mutants with albino phenotypes. A simple, rapid, highly reproducible, stable transformation and CRISPR/Cas9-based genome editing system for chickpea was established. This study aimed to demonstrate this system's applicability by performing a gene knockout of the chickpea PDS gene using an improved chickpea transformation protocol for the first time.


Assuntos
Cicer , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Cicer/genética , Códon , Agrobacterium tumefaciens , Genoma de Planta/genética
8.
BMC Biol ; 21(1): 15, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721195

RESUMO

BACKGROUND: Rhizoctonia solani is a polyphagous fungal pathogen that causes diseases in crops. The fungal strains are classified into anastomosis groups (AGs); however, genomic complexity, diversification into the AGs and the evolution of pathogenicity-associated genes remain poorly understood. RESULTS: We report a recent whole-genome duplication and sequential segmental duplications in AG1-IA strains of R. solani. Transposable element (TE) clusters have caused loss of synteny in the duplicated blocks and introduced differential structural alterations in the functional domains of several pathogenicity-associated paralogous gene pairs. We demonstrate that the TE-mediated structural variations in a glycosyl hydrolase domain and a GMC oxidoreductase domain in two paralogous pairs affect the pathogenicity of R. solani. Furthermore, to investigate the association of TEs with the natural selection and evolution of pathogenicity, we sequenced the genomes of forty-two rice field isolates of R. solani AG1-IA. The genomic regions with high population mutation rates and with the lowest nucleotide diversity are enriched with TEs. Genetic diversity analysis predicted the genes that are most likely under diversifying and purifying selections. We present evidence that a smaller variant of a glucosamine phosphate N-acetyltransferase (GNAT) protein, predicted to be under purifying selection, and an LPMP_AA9 domain-containing protein, predicted to be under diversifying selection, are important for the successful pathogenesis of R. solani in rice as well as tomato. CONCLUSIONS: Our study has unravelled whole-genome duplication, TE-mediated neofunctionalization of genes and evolution of pathogenicity traits in R. solani AG1-IA. The pathogenicity-associated genes identified during the study can serve as novel targets for disease control.


Assuntos
Duplicação Gênica , Oryza , Virulência/genética , Rhizoctonia/genética , Genômica , Elementos de DNA Transponíveis
9.
New Phytol ; 238(2): 798-816, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683398

RESUMO

Flavonoids are important plant pigments and defense compounds; understanding the transcriptional regulation of flavonoid biosynthesis may enable engineering crops with improved nutrition and stress tolerance. Here, we characterize R2R3-MYB domain subgroup 7 transcription factor CaMYB39, which regulates flavonol biosynthesis primarily in chickpea trichomes. CaMYB39 overexpression in chickpea was accompanied by a change in flux availability for the phenylpropanoid pathway, particularly flavonol biosynthesis. Lines overexpressing CaMYB39 showed higher isoflavonoid levels, suggesting its role in regulating isoflavonoid pathway. CaMYB39 transactivates the transcription of early flavonoid biosynthetic genes (EBG). FLAVONOL SYNTHASE2, an EBG, encodes an enzyme with higher substrate specificity for dihydrokaempferol than other dihydroflavonols explaining the preferential accumulation of kaempferol derivatives as prominent flavonols in chickpea. Interestingly, CaMYB39 overexpression increased trichome density and enhanced the accumulation of diverse flavonol derivatives in trichome-rich tissues. Moreover, CaMYB39 overexpression reduced reactive oxygen species levels and induced defense gene expression which aids in partially blocking the penetration efficiency of the fungal pathogen, Ascochyta rabiei, resulting in lesser symptoms, thus establishing its role against deadly Ascochyta blight (AB) disease. Overall, our study reports an instance where R2R3-MYB-SG7 member, CaMYB39, besides regulating flavonol biosynthesis, modulates diverse pathways like general phenylpropanoid, isoflavonoid, trichome density, and defense against necrotrophic fungal infection in chickpea.


Assuntos
Cicer , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Cicer/genética , Cicer/metabolismo , Flavonoides , Flavonóis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
10.
Food Chem ; 405(Pt A): 134835, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36356361

RESUMO

Ricebean accessions (n = 38) cultivated in India were evaluated for their comprehensive nutrient, anti-nutrients and mineral composition. Protein and total dietary fibre ranged between 23.23 and 27.33 and 12.27 to 16.69 g/100 g, respectively. Among the oligosaccharides, verbascose was not detected, however, raffinose and stachyose ranged between 47 and 186 and 117 to 5765 mg/100 g, respectively. Among the free sugars, sucrose was found dominating (up to 370 mg/100 g). Resistant starch (4.13 to 8.62 %), iron (3.49 to 7.46 mg/100 g), zinc (1.90 to 3.72 mg/100 g) and selenium (0.28 to 4.48 µg/100 g) varied significantly (p < 0.05) among ricebean samples. Phytic acid, saponin, trypsin inhibitor and oxalate analysed in ricebean accessions ranged between 303 and 760 mg/100 g, 19 to 46 mg/g, 309 to 1076 mg/100 g and 219 to 431 mg/100 g, respectively. Multivariate analysis using hierarchical clustering analysis (HCA), and principal component analysis (PCA) was employed to decipher the diversity of nutrients and anti-nutrients across the ricebean accessions. Based on HCA, dendrogram-1 (nutrients) and dendrogram-2 (minerals, anti-nutrients) were produced, having four clusters in each. In the dendrogram-1 and 2, the largest cluster had (n = 21) and (n = 15) accessions, respectively. The PCA analyse the uncorrelated set of variables (principal components) and it condenses a large set of data variables. Based on the eigenvalue >1, a total of eight PCs were formed contributing total variance of 78.8 %. The factor loading contribution in the PC1 and PC2 were from iron, fructose, glucose, raffinose and total dietary fibre, selenium (Se) and protein, respectively.


Assuntos
Selênio , Vigna , Amido Resistente , Rafinose/análise , Minerais/análise , Fibras na Dieta/análise , Ferro
11.
J Exp Bot ; 74(1): 130-148, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205079

RESUMO

Flower and seed coat colour are important agronomic traits in chickpea (Cicer arietinum L.). Cultivated chickpeas are of two types namely, desi (dark seeded, purple flowered) and kabuli (light seeded, white flowered). There has been limited information about the molecular mechanism underlying colour variation of flower and seed coats in desi and kabuli chickpea. We profiled the anthocyanin and proanthocyanidin (PA) contents in chickpea flowers and seed coats. Tissue-specific silencing of two genes encoding a basic helix-loop-helix (CabHLH) protein and a tonoplast-localized multidrug and toxic compound extrusion (CaMATE1) transporter in a desi genotype resulted in the reduction in expression of anthocyanin and PA biosynthetic genes and anthocyanin and PA contents in the flower and seed coat, and produced flowers and seeds with kabuli characteristics. Transcriptional regulation of a subset of anthocyanin and PA biosynthetic genes by a natural CabHLH variant and transport assay of a natural CaMATE1 variant explained the association of these alleles with the kabuli phenotype. We carried out a detailed molecular characterization of these genes, and provided evidence that kabuli chickpea flower and seed colour phenotypes can be derived by manipulation of single genes in a desi chickpea background.


Assuntos
Cicer , Proantocianidinas , Cicer/genética , Antocianinas/metabolismo , Proantocianidinas/metabolismo , Cor , Sementes/genética , Sementes/metabolismo , Flores/genética
12.
Front Genet ; 13: 941595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923693

RESUMO

The development of high-yielding, bio-fortified, stress-tolerant crop cultivars is the need of the hour in the wake of increasing global food insecurity, abrupt climate change, and continuous shrinking of resources and landmass suitable for agriculture. The cytokinin group of phytohormones positively regulates seed yield by simultaneous regulation of source capacity (leaf senescence) and sink strength (grain number and size). Cytokinins also regulate root-shoot architecture by promoting shoot growth and inhibiting root growth. Cytokinin oxidase/dehydrogenase (CKX) are the only enzymes that catalyze the irreversible degradation of active cytokinins and thus negatively regulate the endogenous cytokinin levels. Genetic manipulation of CKX genes is the key to improve seed yield and root-shoot architecture through direct manipulation of endogenous cytokinin levels. Downregulation of CKX genes expressed in sink tissues such as inflorescence meristem and developing seeds, through reverse genetics approaches such as RNAi and CRISPR/Cas9 resulted in increased yield marked by increased number and size of grains. On the other hand, root-specific expression of CKX genes resulted in decreased endogenous cytokinin levels in roots which in turn resulted in increased root growth indicated by increased root branching, root biomass, and root-shoot biomass ratio. Enhanced root growth provided enhanced tolerance to drought stress and improved micronutrient uptake efficiency. In this review, we have emphasized the role of CKX as a genetic factor determining yield, micronutrient uptake efficiency, and response to drought stress. We have summarised the efforts made to increase crop productivity and drought stress tolerance in different crop species through genetic manipulation of CKX family genes.

14.
Nature ; 599(7886): 622-627, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759320

RESUMO

Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively.


Assuntos
Cicer/genética , Variação Genética , Genoma de Planta/genética , Análise de Sequência de DNA , Produtos Agrícolas/genética , Haplótipos/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
15.
Front Genet ; 12: 791355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126460

RESUMO

Ricebean (Vigna umbellata) is a lesser known pulse with well-recognized potential. Recently, it has emerged as a legume with endowed nutritional potential because of high concentration of quality protein and other vital nutrients in its seeds. However, the genes and pathways involved in regulating seed development and size are not understood in this crop. In our study, we analyzed the transcriptome of two genotypes with contrasting grain size (IC426787: large seeded and IC552985: small seeded) at two different time points, namely, 5 and 10 days post-anthesis (DPA). The bold seeded genotype across the time points (B5_B10) revealed 6,928 differentially expressed genes (DEGs), whereas the small seeded genotype across the time point (S5_S10) contributed to 14,544 DEGs. We have also identified several candidate genes for seed development-related traits like seed size and 100-seed weight. On the basis of similarity search and domain analysis, some candidate genes (PHO1, cytokinin dehydrogenase, A-type cytokinin, and ARR response negative regulator) related to 100-seed weight and seed size showed downregulation in the small seeded genotype. The MapMan and KEGG analysis confirmed that auxin and cytokinin pathways varied in both the contrasting genotypes and can therefore be the regulators of the seed size and other seed development-related traits in ricebeans. A total of 51 genes encoding SCF TIR1/AFB , Aux/IAA, ARFs, E3 ubiquitin transferase enzyme, and 26S proteasome showing distinct expression dynamics in bold and small genotypes were also identified. We have also validated randomly selected SSR markers in eight accessions of the Vigna species (V. umbellata: 6; Vigna radiata: 1; and Vigna mungo: 1). Cross-species transferability pattern of ricebean-derived SSR markers was higher in V. radiata (73.08%) than V. mungo (50%). To the best of our knowledge, this is the first transcriptomic study conducted in this crop to understand the molecular basis of any trait. It would provide us a comprehensive understanding of the complex transcriptome dynamics during the seed development and gene regulatory mechanism of the seed size determination in ricebeans.

16.
Plant Signal Behav ; 15(6): 1754621, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32290771

RESUMO

In our recent publication, we have shown that a member of the Laccase family, LACCASE2 (LAC2) acted as a negative regulator of lignin deposition in the root xylem tissue of Arabidopsis thaliana. LAC2 messenger RNA (mRNA) level was post-transcriptionally regulated by microRNA 397b, which showed increased expression under water and phosphate deficiency, resulting in the downregulation of LAC2 expression In this report, we have investigated root growth and lignin deposition in an economically important legume crop chickpea (Cicer arietinum L.) in response to natural drought in soil-grown condition. In contrast to the growth retardation of Arabidopsis root in mannitol-supplemented medium, chickpea root showed an increase in length in low soil moisture condition. Lignin estimation in the primary root showed an increase in lignin content, which was substantiated by staining of root xylem. Drought treatment enhanced the expression of four out of six LAC genes tested, while the expression of two was downregulated. Our preliminary study indicateed a molecular mechanism of lignin deposition in chickpea root xylem during drought.


Assuntos
Cicer/metabolismo , Lignina/metabolismo , Raízes de Plantas/metabolismo , Cicer/genética , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Plant Biotechnol J ; 18(11): 2225-2240, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32181964

RESUMO

Cytokinin group of phytohormones regulate root elongation and branching during post-embryonic development. Cytokinin-degrading enzymes cytokinin oxidases/dehydrogenases (CKXs) have been deployed to investigate biological activities of cytokinin and to engineer root growth. We expressed chickpea cytokinin oxidase 6 (CaCKX6) under the control of a chickpea root-specific promoter of CaWRKY31 in Arabidopsis thaliana and chickpea having determinate and indeterminate growth patterns, respectively, to study the effect of cytokinin depletion on root growth and drought tolerance. Root-specific expression of CaCKX6 led to a significant increase in lateral root number and root biomass in Arabidopsis and chickpea without any penalty to vegetative and reproductive growth of shoot. Transgenic chickpea lines showed increased CKX activity in root. Soil-grown advanced chickpea transgenic lines exhibited higher root-to-shoot biomass ratio and enhanced long-term drought tolerance. These chickpea lines were not compromised in root nodulation and nitrogen fixation. The seed yield in some lines was up to 25% higher with no penalty in protein content. Transgenic chickpea seeds possessed higher levels of zinc, iron, potassium and copper. Our results demonstrated the potential of cytokinin level manipulation in increasing lateral root number and root biomass for agronomic trait improvement in an edible legume crop with indeterminate growth habit.


Assuntos
Cicer , Cicer/genética , Secas , Oxirredutases , Raízes de Plantas
18.
Plant Physiol ; 182(3): 1387-1403, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31949029

RESUMO

Deficiency of water and phosphate induce lignin deposition in roots. LACCASEs, a family of cell wall-localized multicopper oxidases, are involved in lignin biosynthesis. We demonstrate here that LACCASE2 (LAC2) acts as a negative regulator of lignin deposition in root vascular tissues during water deficit. An Arabidopsis (Arabidopsis thaliana) transfer DNA insertion mutant of LAC2 displayed a short primary root and high lignin deposition in root vascular tissues. However, restoration of LAC2 expression rescued these phenotypes. LAC2 expression was significantly down-regulated under water deficit and posttranscriptionally regulated by microRNA397b (miR397b) in roots under normal and water-deficit conditions. Down-regulation of miR397b activity increased LAC2 expression and root length, and decreased lignin content in root vasculature. Similarly, phosphate (Pi) deficiency inversely affected miR397b and LAC2 expression. Lignin deposition in the root elongation zone under Pi-limited conditions was dependent on LAC2 expression. Localized iron accumulation and callose deposition in the root elongation zone under Pi deficiency increased with LAC2-dependent lignification, suggesting a direct relationship between these processes. Our study reveals a regulatory role for the miR397b-LAC2 module in root lignification during water and phosphate deficiency.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo
19.
J Exp Bot ; 70(1): 133-147, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239807

RESUMO

Co-ordination of auxin and cytokinin activities determines root meristem size during post-embryonic development. Calcineurin B-like proteins (CBLs) and their interacting protein kinases (CIPKs) constitute signaling modules that relay calcium signals. Here we report that CIPK25 is involved in regulating the root meristem size. Arabidopsis plants lacking CIPK25 expression displayed a short root phenotype and a slower root growth rate with fewer meristem cells. This phenotype was rescued by restoration of CIPK25 expression. CIPK25 interacted with CBL4 and -5, and displayed strong gene expression in the flower and root, except in the cell proliferation domain in the root apical meristem. Its expression in the root was positively and negatively regulated by auxin and cytokinin, respectively. The cipk25 T-DNA insertion line was compromised in auxin transport and auxin-responsive promoter activity. The cipk25 mutant line showed altered expression of auxin efflux carriers (PIN1 and PIN2) and an Aux/IAA family gene SHY2. Decreased PIN1 and PIN2 expression in the cipk25 mutant line was completely restored when combined with a SHY2 loss-of-function mutation, resulting in recovery of root growth. SHY2 and PIN1 expression was partially regulated by cytokinin even in the absence of CIPK25, suggesting a CIPK25-independent cytokinin signaling pathway(s). Our results revealed that CIPK25 plays an important role in the co-ordination of auxin and cytokinin signaling in root meristem development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/imunologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/farmacologia , DNA Bacteriano/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia
20.
Sci Rep ; 7(1): 4632, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680071

RESUMO

Activity of root apical meristem (RAM) at the root apex is critical for stress-mediated modulation of root-architecture. Chickpea, like other legumes, possesses a basic open root meristem. Deep sequencing was used to perform microRNA expression profiling in root apex of chickpea (Cicer arietinum L.) in order to investigate post-transcriptional regulation of gene expression in this tissue in response to salinity and water deficit. Five small RNA libraries prepared from chickpea root apices at different stages of stress treatments were sequenced to obtain 284 unique miRNA sequences including 60 novel miRNAs belonging to total 255 families. Two hundred and fiftynine miRNAs were differentially expressed in stress. Six hundred and nine mRNA targets involved in diverse cellular processes were predicted for 244 miRNAs. Stress-responsive expression patterns of selected miRNAs, inverse expression patterns of their target genes and the target-cleavage sites were validated. Three candidate miRNA-target gene relationships were validated in transient expression system in chickpea. The miRNA expression profiling under salinity and water deficiency in a legume root apex and the reported function of their target genes suggested important roles of miRNA-mediated post-transcriptional regulation of gene expression involved in re-patterning of root hair cells, lateral root formation and high-affinity K+-uptake under these stresses.


Assuntos
Cicer/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , MicroRNAs/genética , Estresse Fisiológico , Secas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Processamento Pós-Transcricional do RNA , RNA de Plantas/genética , Estresse Salino , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...