Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Technol Int ; : 10820132241232714, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38414353

RESUMO

The first high-protein rice variety of India, CR Dhan 310, developed at ICAR-NRRI, Cuttack is being selected for the study. It contains 10.1% protein in milled rice as compared to 6-7% protein content in the milled rice of any other normal variety. It has intermediate amylose content (25.1%), medium bold grains rich in protein (10.1%) The significant changes in properties of raw and parboiled rice on processing were studied at statistical differences of p ≤ 0.05. These properties included physical, optical, antioxidant and rheological properties which changed with different processing techniques. All the three processes namely, puffing, popping and flaking increased the dimensions as compared to the raw rice. Peak viscosity measurements demonstrated the breakdown of starch molecules, with white rice having the greatest value (4145 cP) and popped rice having the lowest value (2017 cP) as a result of the starch granules being gelatinized during the production of popped rice. Highest anthocyanin content (2.93 mg/100 g) was observed in puffed rice, phenolic content (347.93 mg/100 g) was highest in popped rice and flaked/flattened rice showed highest flavonoid content (127.12 mg/100 g) indicating that tertiary processing of rice obtained higher values of phytochemicals when compared to the plain high-protein rice. This indicates that the processed products of rice can be consumed directly as ready-to-eat or can be used in preparation of other functional foods to combat malnutrition and build nutritional security. The study indicates that processing could improve the nutritional quality of the rice products.

2.
Physiol Mol Biol Plants ; 28(1): 203-221, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35221580

RESUMO

Assessing genetic variability of micronutrient content in association with qualitative and quantitative traits in germplasm is prerequisite for effective biofortification programme. Odisha, a state of eastern India is considered as one of the most potential hot spot of diversity of cultivated rice for grain yield and nutritional traits. Significant variability for most of the qualitative and quantitative traits including Fe and Zn content was observed in a set of 293 germplasm with varying kernel colour encompassing 14 districts of Odisha. Mostly these landraces were low yielding with some exception (Haldigundi: AC 36454, 50.08 g/plant). These landraces were mostly represented by medium Fe (10-20 ppm)-medium Zn group (20-30 ppm). Fe and Zn content had positive association with each other and also with grain size. Landraces with red kernel colour were observed to have slightly higher average Zn content (26.30 ppm) as compared to white (25.87 ppm) grains. Diversity analysis of 14 districts revealed that Nayagarh, a south-eastern district was rich in Fe content while Deogarh, Keonjhar and Mayurbhanj, all north-western districts were rich in Zn content. This study identified 10 superior micronutrient dense genotypes with medium to high Fe and Zn content. This set of donors for micronutrient content was validated in another year. Champeisiali (AC 43368) and Gedemalati (AC 34306) with highest Fe (44.1 ppm) and Zn (40.48 ppm) content, respectively were detected over the environments. Identified donors and associated traits could be utilized in biofortificaion programme using appropriate breeding methodologies for enhancing micronutrients in high yielding background. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01119-7.

3.
Physiol Plant ; 173(4): 1597-1615, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34431099

RESUMO

Plant's response to fresh- and saline-water flooding and the resulting partial submergence, seems different due to the added complexities of element toxicity of salinity. We identified a few rice genotypes which can tolerate combined stresses of partial submergence and salinity during saline water flooding. To gain mechanistic insights, we compared two rice genotypes: Varshadhan (freshwater-flooding tolerant) and Rashpanjor (both fresh- and saline-water flooding tolerant). We found greater ethylene production and increased "respiratory burst oxidase homolog" (RBOH)-mediated reactive oxygen species (ROS) production led to well-developed constitutive aerenchyma formation in Rashpanjor, which makes it preadapted to withstand fresh- and saline-water flooding. On the contrary, an induced aerenchyma formation-dependent tolerance mechanism of Varshadhan worked well for freshwater flooding but failed to provide tolerance to saline-water flooding. Additional salt stress was found to significantly inhibit the induced aerenchyma formation process due to the dampening of ROS signaling by the action of metallothionein in Varshadhan. Besides, inconspicuous changes in ionic regulation processes in these two genotypes under saline-water flooding suggest preadapted constitutive aerenchyma formation plays a more significant role than elemental toxicity per se in tolerating combined stresses encountered during saline water flooding in rice. Overall, our study indicated that well-developed constitutive aerenchyma provide an adaptive advantage during partial submergence due to saline water flooding in rice as the key process of induced aerenchyma formation is hampered in the presence of salinity stress coupled with partial submergence.


Assuntos
Oryza , Inundações , Oryza/genética , Raízes de Plantas , Espécies Reativas de Oxigênio , Águas Salinas
4.
Ann Bot ; 127(2): 251-265, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32939540

RESUMO

BACKGROUND AND AIMS: Submergence tolerance in rice is primarily attributed to the action of the SUB1 gene, but other associated traits such as leaf gas film (LGF) thickness, leaf hydrophobicity, porosity and leaf density have been known to aid submergence tolerance in rice. However, association of these traits with SUB1 quantitative trait locus (QTL) has not been demonstrated. In this study, we aim to investigate (1) whether the presence of the SUB1 QTL in the genetic background has any influence on the thickness of the LGF and (ii) whether its removal has any impact on stress perception and submergence tolerance in Sub1 and non-Sub1 rice. METHODS: We examined 12 genotypes (including both Sub1 and non-Sub1 types) for different leaf traits such as initial LGF thickness, leaf hydrophobicity, tissue porosity and leaf density in order to work out the relatioship of these traits to the SUB1 QTL in rice. Furthermore, we investigated the changes in the gene expression profile and different metabolic processes in selected genotypes in the presence and absence of their LGF to study its impact on stress perception and adaptation. KEY RESULTS: The initial thickness of the LGF and hydrophobicity seemed to have a highly positive correlation with the presence of the SUB1 QTL in the genetic background of rice; however, other leaf traits such as porosity and density seemed to be independent of it. Artificial removal of the LGF resulted in partial loss of tolerance, showing increased ethylene production and early induction of anoxia-related genes (SUB1A-1, ACS5, Ramy3D and ADH1) which manifested symptoms such as increased stem elongation, faster chlorophyll and starch breakdown, and partial loss of quiescence in SUB1-containing rice genotypes. Stripping of the LGF resulted in early and enhanced induction of SUB1A-1, indicating a quicker perception of stress. CONCLUSIONS: The presence of SUB1 in the genetic background positively influences surface hydrophobicity and the concomitant LGF thickness of rice. Furthermore, LGF helps in terms of providing better ethylene dissipation and reduced in planta accumulation, owing to the slowing down of ethylene-induced leaf senescence under submergence stress.


Assuntos
Oryza , Adaptação Fisiológica , Genes de Plantas , Oryza/genética , Percepção , Folhas de Planta/genética , Locos de Características Quantitativas/genética
5.
Physiol Mol Biol Plants ; 27(12): 2893-2909, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35035143

RESUMO

In lowland rice ecosystems stagnant flooding or partial submergence has a significant negative impact on important yield attributing traits resulting in substantial grain yield reduction. Genetics of this stress is not yet studied intensively. Rashpanjor (IC 575321), a landrace from India, was identified and used as the tolerant donor for stagnant flooding and was crossed with high yielding variety Swarna to develop the RIL population for the present investigation. Yield and yield attributing traits of 180 F2:8 lines in rainfed non-stressed and stressed (stagnant flooding with 45 ± 5 cm standing water) conditions were recorded in the wet season of 2018 and stress susceptibility and tolerance indices of yield component traits were deduced. Homo-polymorphic high-quality SNPs between two parents derived from genotyping by sequencing were employed and 17 putative QTLs for plant height, shoot elongation, panicle number, grain weight, panicle length in control and stagnant flooding conditions were identified. Tolerance and susceptibility indexes for these traits were detected in chromosomes 1, 3, 4, 5, 6, 10, 11, and 12 with PVE ranging from 6.53 to 57.89%. Two major QTLs clusters were found for stress susceptibility index of grain and panicle weight on chromosome 1 and plant height in non-stress condition and stress tolerance index of elongation ability on chromosome 3. Putative functional genes present either in associated non-synonymous SNPs or inside the QTL regions were also predicted. Some of them were directly associated with ethylene biosynthesis and encoding auxin responsive factors for better adaptation under stagnant flooding and also coded for different transcription factors viz. NAC domain-binding protein, WRKY gene family, and MYB class known for ROS scavenging and production of metabolites to enhance tolerance to stagnant flooding. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01107-x.

6.
PLoS One ; 15(7): e0227785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32673318

RESUMO

A panel of 60 genotypes comprising New Plant Types (NPTs) along with indica, tropical and temperate japonica genotypes was phenotypically evaluated for four seasons in irrigated situation for grain yield per se and component traits. Twenty NPT genotypes were found promising with an average grain yield varying from 5.45 to 8.8 t/ha. A total of 85 SSR markers were used in the study to identify QTLs associated with grain yield per se and related traits. Sixty-six (77.65%) markers were found to be polymorphic. The PIC values varied from 0.516 to 0.92 with an average of 0.704. A moderate level of genetic diversity (0.39) was detected among genotypes. Variation to the tune of 8% within genotypes, 68% among the genotypes within the population and 24% among the populations were observed (AMOVA). This information may help in identification of potential parents for development of transgressive segregants with very high yield. The association analysis using GLM and MLM models led to the identification of 30 and 10 SSR markers associated with 70 and 16 QTLs, respectively. Thirty novel QTLs linked with 16 SSRs were identified to be associated with eleven traits, namely tiller number (qTL-6.1, qTL-11.1, qTL-4.1), panicle length (qPL-1.1, qPL-5.1, qPL-7.1, qPL-8.1), flag leaf length (qFLL-8.1, qFLL-9.1), flag leaf width (qFLW-6.2, qFLW-5.1, qFLW-8.1, qFLW-7.1), total no. of grains (qTG-2.2, qTG-a7.1), thousand-grain weight (qTGW-a1.1, qTGW-a9.2, qTGW-5.1, qTGW-8.1), fertile grains (qFG-7.1), seed length-breadth ratio (qSlb-3.1), plant height (qPHT-6.1, qPHT-9.1), days to 50% flowering (qFD-1.1) and grain yield per se (qYLD-5.1, qYLD-6.1a, qYLD-11.1).Some of the SSRs were co-localized with more than two traits. The highest co-localization was identified with RM5709 linked to nine traits, followed by RM297 with five traits. Similarly, RM5575, RM204, RM168, RM112, RM26499 and RM22899 were also recorded to be co-localized with more than one trait and could be rated as important for marker-assisted backcross breeding programs, for pyramiding of these QTLs for important yield traits, to produce new-generation rice for prospective increment in yield potentiality and breaking yield ceiling.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Grão Comestível/genética , Variação Genética , Genótipo , Repetições de Microssatélites/genética , Oryza/fisiologia , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Análise de Componente Principal
7.
Front Plant Sci ; 11: 265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269578

RESUMO

Salinity is one of the major constraints in rice production. To date, development of salt-tolerant rice cultivar is primarily focused on salt-exclusion strategies, which incur greater energy cost. The present study aimed to evaluate a balancing strategy of ionic discrimination vis-à-vis tissue tolerance, which could potentially minimize the energy cost of salt tolerance in rice. Four rice genotypes, viz., FL478, IR29, Kamini, and AC847, were grown hydroponically and subjected to salt stress equivalent to 12 dS m-1 at early vegetative stage. Different physiological observations (leaf chlorophyll content, chlorophyll fluorescence traits, and tissue Na+ and K+ content) and visual scoring suggested a superior Na+-partitioning strategy operating in FL478. A very low tissue Na+/K+ ratio in the leaves of FL478 after 7 days of stress hinted the existence of selective ion transport mechanism in this genotype. On the contrary, Kamini, an equally salt-tolerant genotype, was found to possess a higher leaf Na+/K+ ratio than does FL478 under similar stress condition. Salt-induced expression of different Na+ and K+ transporters indicated significant upregulation of SOS, HKT, NHX, and HAK groups of transporters in both leaves and roots of FL478, followed by Kamini. The expression of plasma membrane and vacuolar H+ pumps (OsAHA1, OsAHA7, and OsV-ATPase) were also upregulated in these two genotypes. On the other hand, IR29 and AC847 showed greater salt susceptibility owing to excess upward transport of Na+ and eventually died within a few days of stress imposition. But in the "leaf clip" assay, it was found that both IR29 and Kamini had high tissue-tolerance and chlorophyll-retention abilities. On the contrary, FL478, although having higher ionic-discrimination ability, showed the least degree of tissue tolerance as evident from the LC50 score (amount of Na+ required to reduce the initial chlorophyll content to half) of 336 mmol g-1 as against 459 and 424 mmol g-1 for IR29 and Kamini, respectively. Overall, the present study indicated that two components (ionic selectivity and tissue tolerance) of salt tolerance mechanism are distinct in rice. Unique genotypes like Kamini could effectively balance both of these strategies to achieve considerable salt tolerance, perhaps with lesser energy cost.

8.
J Sci Food Agric ; 100(4): 1598-1607, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31773736

RESUMO

BACKGROUND: Phytic acid (PA) is an anti-nutrient present in cereals and pulses. It is known to reduce mineral bioavailability and inhibit starch-digesting α-amylase (which requires calcium for activity) in the human gut. In principle, the greater the amount of PA, the lower is the rate of starch hydrolysis. It is reflected in the lower glycemic index (GI) value of food. People leading sedentary lifestyles and consuming rice as a staple food are likely to develop type 2 diabetes. Hence, this study was planned to understand how PA content of different rice varieties affects the GI. RESULTS: Rice Khira and Mugai which had very low PA (0.30 and 0.36 g kg-1 , respectively) had higher GI values and α-amylase activity, while Nua Dhusara and the pigmented rice Manipuri black rice (MBR) which had high PA (2.13 and 2.98 g kg-1 , respectively) showed low α-amylase activity and GI values. This relationship was statistically significant, though a weak relationship was found for the pigmented rice. Expression levels of MIPSI, IPKI and GBSSI markedly increased in the middle stage of grain development in all of the six genotypes having contrasting PA and GI. Maximum expression of MIPSI and IPKI was observed in Nua Dhusara and MBR (which had high PA) while that of GBSSI was observed in Khira and Mugai (with higher GI) at middle stage showing a negative correlation between PA and GI. CONCLUSIONS: The data indicate that high PA content in rice might have an adverse effect on starch digestibility resulting in slower starch digestion in the human gut and consequently low glycemic response. © 2019 Society of Chemical Industry.


Assuntos
Mucosa Gástrica/metabolismo , Oryza/metabolismo , Ácido Fítico/metabolismo , Amido/metabolismo , Digestão , Índice Glicêmico , Humanos , Modelos Biológicos , Oryza/química , Ácido Fítico/análise , Amido/química , alfa-Amilases/química , alfa-Amilases/metabolismo
9.
Sci Rep ; 9(1): 18567, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811177

RESUMO

In the recent time, Submergence1 (Sub1)QTL, responsible for imparting tolerance to flash flooding, has been introduced in many rice cultivars, but resilience of the QTL to stagnant flooding (SF) is not known. The response of Sub1-introgression has been tested on physiology, molecular biology and yield of two popular rice cultivars (Swarna and Savitri) by comparison of the parental and Sub1-introgression lines (SwarnaSub1 and SavitriSub1) under SF. Compared to control condition SF reduced grain yield and tiller number and increased plant height and Sub1- introgression mostly matched these effects. SF increased ethylene production by over-expression of ACC-synthase and ACC-oxidase enzyme genes of panicle before anthesis in the parental lines. Expression of the genes changed with Sub1-introgression, where some enzyme isoform genes over-expressed after anthesis under SF. Activities of endosperm starch synthesizing enzymes SUS and AGPase declined concomitantly with rise ethylene production in the Sub1-introgressed lines resulting in low starch synthesis and accumulation of soluble carbohydrates in the developing spikelets. In conclusion, Sub1-introgression into the cultivars increased susceptibility to SF. Subjected to SF, the QTL promoted genesis of ethylene in the panicle at anthesis to the detriment of grain yield, while compromising with morphological features like tiller production and stem elongation.


Assuntos
Etilenos/biossíntese , Genes de Plantas/genética , Introgressão Genética , Oryza/fisiologia , Locos de Características Quantitativas , Adaptação Fisiológica/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Inundações , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/biossíntese , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Amido/biossíntese
10.
Sci Rep ; 9(1): 3196, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824776

RESUMO

Lack of appropriate donors, non-utilization of high throughput phenotyping and genotyping platforms with high genotype × environment interaction restrained identification of robust QTLs for grain protein content (GPC) in rice. In the present investigation a  BC3F4 mapping population was developed using grain protein donor, ARC10075 and high-yielding cultivar Naveen and 190 lines were genotyped using 40 K Affimetrix custom SNP array with the objective to identify stable QTLs for protein content. Three of the identified QTLs, one for GPC (qGPC1.1) and the other two for single grain protein content (qSGPC2.1, qSGPC7.1) were stable over the environments explaining  13%, 14% and 7.8% of the phenotypic variances, respectively. Stability and repeatability of these additive QTLs were supported by the synergistic additive effects of multi-environmental-QTLs. One epistatic-QTL, independent of  the  main effect QTL was detected over the environment for SGPC. A few functional genes governing seed storage protein were hypothesised inside these identified QTLs. The qGPC1.1 was validated by NIR Spectroscopy-based high throughput phenotyping in BC3F5 population. Higher glutelin content was estimated in high-protein lines with the introgression of qGPC1.1 in telomeric region of short arm of chromosome 1. This was supported by the postulation of probable candidate gene inside this QTL region encoding glutelin family proteins.


Assuntos
Técnicas de Genotipagem , Proteínas de Grãos/metabolismo , Oryza/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Meio Ambiente , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Ligação Genética , Endogamia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes
11.
Funct Plant Biol ; 46(3): 248-261, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-32172768

RESUMO

Chlorophyll a fluorescence (ChlF) parameters measured with fluorescence imaging techniques were used to investigate the combined effect of salt and partial submergence stress to understand photosynthetic performance in rice (Oryza sativa L.). ChlF parameters such as maximal fluorescence (Fm), variable fluorescence (Fv=Fm -F0), the maximal photochemical efficiency of PSII (Fv/Fm) and the quantum yield of nonregulated energy dissipation of PSII (Y(NO)) were able to distinguish genotypes precisely based on their sensitivity to stress. Upon analysis, we found the images of F0 were indistinguishable among the genotypes, irrespective of their tolerance to salt and partial submergence stress. On the contrary, the images of Fm and Fv/Fm showed marked differences between the tolerant and susceptible genotypes in terms of tissue greenness and the appearance of dark spots as stress symptoms. The images of effective PSII quantum yield, the coefficient of nonphotochemical quenching (qN) and the coefficient of photochemical quenching (qP) captured under different PAR were able to distinguish the tolerant and susceptible genotypes, and were also quite effective for differentiating the tolerant and moderately tolerant ones. Similarly, the values of electron transport rate, qN, qP and Y(NO) were also able to distinguish the genotypes based on their sensitivity to stress. Overall, this investigation indicates the suitability of chlorophyll fluorescence imaging technique for precise phenotyping of rice based on their sensitivity to the combined effect of salt and partial submergence.


Assuntos
Oryza , Clorofila , Clorofila A , Fluorescência , Genótipo , Salinidade
12.
Physiol Mol Biol Plants ; 24(6): 1047-1058, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30425422

RESUMO

The present study reports an unequivocal and improved protocol for efficient screening of salt tolerance at flowering stage in rice, which can aid phenotyping of population for subsequent identification of QTLs associated with salinity stress, particularly at reproductive stage. To validate the new method, the selection criteria, level and time of imposition of stress; plant growth medium were standardized using three rice genotypes. The setup was established with a piezometer placed in a perforated pot for continuous monitoring of soil EC and pH throughout the period of study. Further, fertilizer enriched soil was partially substituted by gravels for stabilization and maintaining the uniformity of soil EC in pots without hindering its buffering capacity. The protocol including modified medium (Soil:Stone, 4:1) at 8 dS m-1 salinity level was validated using seven different genotypes possessing differential salt sensitivity. Based on the important selection traits such as high stability index for plant yield, harvest index and number of grains/panicle and also high K+ concentration and low Na+- K+ ratio in flag leaf at grain filling stage were validated and employed in the evaluation of a mapping population in the modified screening medium. The method was found significantly efficient for easy maintenance of desired level of soil salinity and identification of genotypes tolerant to salinity at reproductive stage.

13.
Food Chem ; 191: 21-7, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26258697

RESUMO

With the escalating persuasion of economic and nutritional importance of rice grain protein and nutritional components of rice bran (RB), NIRS can be an effective tool for high throughput screening in rice breeding programme. Optimization of NIRS is prerequisite for accurate prediction of grain quality parameters. In the present study, 173 brown rice (BR) and 86 RB samples with a wide range of values were used to compare the calibration models generated by different chemometrics for grain protein (GPC) and amylose content (AC) of BR and proximate compositions (protein, crude oil, moisture, ash and fiber content) of RB. Various modified partial least square (mPLSs) models corresponding with the best mathematical treatments were identified for all components. Another set of 29 genotypes derived from the breeding programme were employed for the external validation of these calibration models. High accuracy of all these calibration and prediction models was ensured through pair t-test and correlation regression analysis between reference and predicted values.


Assuntos
Amilose/análise , Grão Comestível/química , Oryza/química , Proteínas de Plantas/análise , Calibragem , Fibras na Dieta/análise , Análise dos Mínimos Quadrados , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...