Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107487, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38908751

RESUMO

Macrophages are essential regulators of inflammation and bone loss. Receptor activator of nuclear factor-κß ligand (RANKL), a pro-inflammatory cytokine, is responsible for macrophage differentiation to osteoclasts and bone loss. We recently showed that 14-3-3ζ-knockout (YwhazKO) rats exhibit increased bone loss in the inflammatory arthritis model. 14-3-3ζ is a cytosolic adaptor protein that actively participates in many signaling transductions. However, the role of 14-3-3ζ in RANKL signaling or bone remodeling is unknown. We investigated how 14-3-3ζ affects osteoclast activity by evaluating its role in RANKL signaling. We utilized 14-3-3ζ-deficient primary bone marrow-derived macrophages obtained from wildtype and YwhazKO animals and RAW264.7 cells generated using CRISPR-Cas9. Our results showed that 14-3-3ζ-deficient macrophages, upon RANKL stimulation, have bigger and stronger tartrate-resistant acid phosphatase-positive multinucleated cells and increased bone resorption activity. The presence of 14-3-3ζ suppressed RANKL-induced MAPK and AKT phosphorylation, transcription factors (NFATC1 and p65) nuclear translocation, and subsequently, gene induction (Rank, Acp5, and Ctsk). Mechanistically, 14-3-3ζ interacts with TRAF6, an essential component of the RANKL receptor complex. Upon RANKL stimulation, 14-3-3ζ-TRAF6 interaction was increased, while RANK-TRAF6 interaction was decreased. Importantly, 14-3-3ζ supported TRAF6 ubiquitination and degradation by the proteasomal pathway, thus dampening the downstream RANKL signaling. Together, we show that 14-3-3ζ regulates TRAF6 levels to suppress inflammatory RANKL signaling and osteoclast activity. To the best of our knowledge, this is the first report on 14-3-3ζ regulation of RANKL signaling and osteoclast activation.


Assuntos
Proteínas 14-3-3 , Osteoclastos , Ligante RANK , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , Camundongos , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Macrófagos/metabolismo , Camundongos Knockout , Osteoclastos/metabolismo , Osteoclastos/citologia , Estabilidade Proteica , Ligante RANK/metabolismo , Ligante RANK/genética , Células RAW 264.7 , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação
2.
Phys Rev Lett ; 132(15): 151001, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682982

RESUMO

We report on a measurement of astrophysical tau neutrinos with 9.7 yr of IceCube data. Using convolutional neural networks trained on images derived from simulated events, seven candidate ν_{τ} events were found with visible energies ranging from roughly 20 TeV to 1 PeV and a median expected parent ν_{τ} energy of about 200 TeV. Considering backgrounds from astrophysical and atmospheric neutrinos, and muons from π^{±}/K^{±} decays in atmospheric air showers, we obtain a total estimated background of about 0.5 events, dominated by non-ν_{τ} astrophysical neutrinos. Thus, we rule out the absence of astrophysical ν_{τ} at the 5σ level. The measured astrophysical ν_{τ} flux is consistent with expectations based on previously published IceCube astrophysical neutrino flux measurements and neutrino oscillations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA