Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 141: 213117, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36155246

RESUMO

A versatile nanoformulation is designed by anchoring human transferrin protein (Tf) on fluoromagnetic upconverting nanoheaters, NaGdF4:Yb,Er (UCNP), loaded with Rose Bengal (RB), for multimodal imaging guided synergistic photothermal (PTT) and photodynamic therapy (PDT) at the targeted tumor site. The NIR excitation of the UCNP-RB Forster Resonance Energy Transfer (FRET) pair results in the reactive oxygen species (ROS) generation for PDT, whereas the non-radiative transitions in Er result in the heat required for PTT. The intravenously injected theranostic agent (UCNP@Tf-RB) enabled; (1) combinatorial PTT and PDT of 4T1 tumors with minimal systemic toxicity, (2) dual targeted (passive and active) tumor accumulation, (3) dual-modal imaging (MRI/photothermal), and, (4) excellent stability and biocompatibility. The in vitro therapy data corroborates the MRI findings that Tf conjugation resulted in actively targeted tumor accumulation via over-expressed transferrin receptors (TfR) on 4T1 cells. Real-time photothermal imaging enabled visualization of the tumor while receiving the therapy. The UCNP@Tf-RB, for synergistic PTT-PDT, and UCNP@Tf, for PTT only, caused rapid suppression of tumor with a tumor-growth inhibition index (TGII) of ~0.91, and 0.79, respectively. Histopathological examination demonstrated minimal damage to non-targeted tissues and caused significant damage to the tumor. This theranostic methodology enhances anti-cancer therapeutic efficiency, and announces the potential for pre-clinical cancer therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/diagnóstico por imagem , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/uso terapêutico , Receptores da Transferrina/uso terapêutico , Rosa Bengala/uso terapêutico , Transferrina/uso terapêutico
2.
Analyst ; 146(11): 3557-3567, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33904550

RESUMO

Fipronil and its metabolite fipronil sulfone, when found in some food products, such as eggs, have caused major public health concerns. In this study, we used gold nanorods (AuNRs) and graphene oxide (GO) nanocomposites to fabricate a layer-by-layer assembled three dimensional (3D) substrate for toxin detection by surface enhanced Raman scattering (SERS). The 4-layers of GO-AuNR 3D SERS substrate were optimized using rhodamine 6G. The optimized SERS substrate was used to detect fipronil and fipronil sulfone in spiked eggs. The obtained limit of detection was 10-8 M (∼4.4 ppb), which is below the maximum residue limit in Taiwan of 10 ppb. Egg samples spiked with fipronil (10-7 and 10-3 M) and fipronil sulfone (10-8 and 10-4 M) were measured and the maximum departure of the measured SERS intensity from the calibrated SERS intensity was ∼14%. Thus, a facile screening method for the detection of fipronil/fipronil sulfone in food-grade eggs by SERS is demonstrated.


Assuntos
Grafite , Nanotubos , Ouro , Pirazóis , Análise Espectral Raman
3.
ACS Appl Mater Interfaces ; 12(25): 28550-28560, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32463650

RESUMO

Plasmonic nanostructure/semiconductor nanohybrids offer many opportunities for emerging electronic and optoelectronic device applications because of their unique geometries in the nanometer scale and material properties. However, the development of a simple and scalable synthesis of plasmonic nanostructure/semiconductor nanohybrids is still lacking. Here, we report a direct synthesis of colloidal gold nanoparticle/graphene quantum dot (Au@GQD) nanohybrids under ambient conditions using microplasmas and their application as photoabsorbers for broad band photodetectors (PDs). Due to the unique AuNP core and graphene shell nanostructures in the synthesized Au@GQD nanohybrids, the plasmonic absorption of the AuNP core extends the usable spectral range of the photodetectors. It is demonstrated that the Au@GQD-based visible light photodetector simultaneously possesses an extraordinary photoresponsivity of ∼103 A/W, ultrahigh detectivity of 1013 Jones, and fast response time in the millisecond scale (65 ms rise time and 53 ms fall time). We suggest that the synergistic effect can be attributed to the strong fluorescence quenching in Au@GQD coupled with the two-dimensional graphene layer in the device. This work provides knowledge of tailoring the optical absorption in GQDs with plasmonic AuNPs and the corresponding photophysics for broad band response in PD-related devices.

4.
Biosens Bioelectron ; 155: 112115, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32217331

RESUMO

Fluorescence based intracellular pH nanoprobes have been developed that overcomes the limitations imposed by shallow penetration depth of ultraviolet excitation, photostability, phototoxicity, and interference from background autofluorescence. In this study, we have constructed a Förster Resonance Energy Transfer (FRET) based pH nanoprobe using upconversion nanoparticle (UCNP) as a donor (excitation/emission @ 980/540 nm, green channel), and mOrange fluorescent protein (excitation/emission @ 548/566 nm, red channel) as acceptor. The UCNP-mOrange nanoprobe could be fluorescently imaged with 980 nm excitation, having deep penetration depth, by a fluorescence microscope on a coverslip, or uptaken in a single HeLa cell. The cellular upatake of these nanoparticles were confirmed by transmission electron microscope study. The FRET probes, with a FRET efficiency of ~20% at physiological pH of 7.0, have simultaneous self-ratiometric and ratiometric features varying linearly with local pH. The probe exhibits high accuracy, sensitivity, reversibility, and stability over a wide range of pH (3.0-8.0). The fluorescence intensity ratio from individual green, and red channels in fluorescence microscopic images could be used to estimate the pH of the intracellular compartments of HeLa cell from the pH dependent ratiometric calibration. Nigericin mediated intracellular pH (3.0, 5.0, and 7.0) could be accurately estimated from the CLSM derived FRET ratio. The pH probes demonstrate high stability and reversibility when switched between pH 3, and 8 for at least 5 cycles.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/química , Nanopartículas/química , Radiometria/métodos , Análise de Célula Única/métodos , Humanos , Microscopia de Fluorescência , Nanotecnologia
5.
Appl Spectrosc ; 73(11): 1308-1316, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31219332

RESUMO

An "all optical" methodology, including Raman and optical transmission spectroscopy, is presented to study the thermal degradation in edible oils. Oils rich in monounsaturated (MU), polyunsaturated (PU), and saturated (S) fatty acids (FA) were heated above and below their smoke point (∼230 ℃). While the intensity (I) of the identified saturated (C-C, 1440 cm-1) FA Raman marker did not change appreciably, the identified unsaturated (C=C, 1265 cm-1) FA marker decreased in these oils when heated above the smoke point. A Raman parameter, I1265/I1440, designating thermal degradation, is proposed that was found to decrease consistently for the PUFA-rich and MUFA-rich oils when heated above the smoke point, while the SFA-rich oil did not degrade at all over the whole temperature range. An optical transmission marker at 2140 nm was identified that decreased consistently with increased thermal stressing. These markers can be calibrated with the variations in the quantitative iodine value, an industrial benchmark for the degree of unsaturation, for thermally stressed oils.

6.
Mater Sci Eng C Mater Biol Appl ; 102: 569-577, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147029

RESUMO

We demonstrate that the upconversion nanoparticles (UCNPs) fluoresce 50 times more on a gold (Au) coated Cicada wing. UCNPs are attractive bioimaging, and therapeutic materials as it is excited in the infrared, limited only by the low fluorescence quantum yield. Here, a plasmonic effect, coupled with an anti-reflecting (AR) Cicada wing substrate coated with Au is demonstrated to enhance the fluorescence of the UCNPs. Silica (SiO2) coated Erbium doped green emitting core-shell UCNPs (NaYF4: Yb3+, Er3+@SiO2) show conventional metal enhanced fluorescence. The AR property of the Cicada wing (R ~0.2% @ 1000 nm) contributes >6-fold enhancement as compared to flat (silicon, and quartz) substrates (R~10-30% @ 1000 nm). Upon plasmon coupling, with an optimally sputtered Au coating, an unprecedented enhancement of >50-fold for the 520, and 655 nm emission was obtained on the Au coated Cicada wings, vis-à-vis planar uncoated (silicon, and quartz) substrates. The enhancement was also confirmed by direct fluorescence imaging of the photonic substrates used. The fluorescence lifetime of the core, and the core-shell UCNPs (~300 µs) decreased by ~30-40%, and 10-30%, respectively, when placed on Au coated substrates.


Assuntos
Ouro/química , Hemípteros/anatomia & histologia , Nanopartículas/química , Asas de Animais/anatomia & histologia , Animais , Fluorescência , Nanopartículas/ultraestrutura
7.
Nanoscale ; 11(19): 9716-9725, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31066385

RESUMO

A hybrid upconversion nanoparticle (UCNP)-graphene composite is demonstrated as a high-sensitivity and high-gain photodetector. The 980 nm multiphoton absorbing UCNPs are used as the photoabsorber, and optimized graphene is used as an efficient charge transporter. Although this device class is in its infancy, we show how critical engineering of the UCNPs, with a silica (SiO2) shell, helps to couple it optically with graphene to get a superior device. This initial report of UCNP-graphene optical coupling is expressed as fluorescence enhancement/quenching of the former in the presence of the latter. While the published literature relies mostly on fluorescence quenching in the UCNPs, our devices use both fluorescence quenching (using core UCNPs), and enhancement (using UCNP@SiO2) to significantly enhance the detector parameters. For example, the photoresponsivity of the core-UCNP device was ∼1.52 × 104 A W-1 which could be improved to ∼2.7 × 104 A W-1 (at 980 nm, power density of ∼31.84 µW cm-2, and under a 1.0 V bias) with the UCNP@SiO2 device. The responsivity, gain, and detectivity thus obtained are the highest reported so far for this class of composite photodetectors. The device could detect signals from domestic hand-held appliances such as laser pointers, cellphone flashlights, and air-conditioning remotes. This work will further the knowledge of device photophysics in this class of hybrids.

8.
ACS Appl Bio Mater ; 2(1): 533-543, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35016317

RESUMO

A combined photothermal therapy (PTT) and chemotherapy (chemo) were performed in vitro on B16F10 melanoma cells and in vivo using melanoma bearing C57BL/6 mice. The 785 nm (100 mW) irradiated gold nanorods (AuNRs) were used as the PT agent, and electrostatically conjugated Doxorubicin (Dox) to a nanocarrier graphene oxide (GO) worked as the chemotherapeutic. Selection of dosage was optimized from the individual viability studies, and finally a combined therapeutic (AuNR (100 ppm), GO (125, and 250 ppm), Dox (0.0058, and 0.00058 ppm)), was delivered in vitro. PTT, followed by chemo, sequentially, resulted in <10% viability, whereas simultaneous PTT with chemo resulted in a viability of ∼40% for the melanoma cells. Flow cytometry indicated optical inhomogeneity in the cells that internalized GO, and AuNR; however, the Dox amount was identical within the cells treated with or without PTT. Confocal microscopy revealed that GO+Dox was internalized, and Dox was distributed uniformly within the cells irrespective of the treatment protocol. In vivo results in melanoma bearing C57BL/6 mice resembled the in vitro data closely. The tumor growth inhibition index was highest at 0.78 for the group receiving sequential treatment, followed by 0.61 for those receiving simultaneous treatment, where the control group had a score of 0. For the sequential treatment, presoftening of the cells with PTT, followed by the chemo resulted in significantly improved toxicity of the treatment, whereas simultaneous PTT with chemo results were dominated by the Dox alone.

9.
ACS Appl Bio Mater ; 2(4): 1634-1642, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026897

RESUMO

The combination of superparamagnetism and excitation independency have been packed into carbon-decorated ferrite nanodots (CDs@MNFs) for the introduction of a cost-effective and less-toxic multimodal contrast agent in fluorescence/MR imaging to replace conventional heavy metal containing Gd-DOTA. The label-free surface engineered ferrite nanodots are capable of generating twin T1 (longitudinal) and T2 (transverse) weighted magnetic resonance (MR) along with fluorescence emission. The calculated molar relaxivities and molar radiant efficiency obtained from in vitro and in vivo studies are the indication of its multimodal efficacy in medical imaging compared to the conventional contrast agents. The cellular internalization of nanodots was established by confocal microscopy and flow cytometric assay, whereas the hemolysis and cell viability assays support their appreciable toxicity. Furthermore, the surface chemistry due to the presence of -COOH was utilized to attach the anticancer agent, doxorubicin (-NH2) making it an external stimuli responsive drug delivery vehicle for the treatment of cancer. Given the ease of fabrication, negligible toxicity, and significant contrast enhancement with stimuli responsive drug release kinetics CDs@MNFs prove to be a potential, cost-effective multimodal imaging agent which could be used for theragnosis.

10.
J Biomed Mater Res A ; 104(4): 842-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26650774

RESUMO

Human osteosarcoma cells MG-63 were cultured on anodically etched titania nanotubes (TiO2 NT), with diameters ranging from 40-100 nm, to study the correlations between cell proliferation and adhesion on the 2.5 dimensional (2.5D) extracellular matrix (ECM). Unlike other reports, mostly based on mouse stem cells, and 2D cell culture, our studies indicate that the 2.5D NT promote higher proliferation and activity, but less 2D adhesion. Proliferation of the MG-63 cells was significantly higher in the NTs, the best being the 70 nm diameter sample, compared to planar titania (control). This is consistent with previous studies. However, cellular adhesion was stronger on TiO2 NT with increasing diameter, and highest on the control as obtained from shear stress measurement, paxilin imaging, and western blot measurements probing focal adhesion kinase, p130 CAS, and extracellular-regulated kinase, in addition to cell morphology imaging by fluorescence microscopy. We provide direct videography of cell migration, and cell speed data indicating faster filopodial activity on the TiO2 NT surfaces having lower adhesion. This evidence was not available previously. The NT matrices promote cells with smaller surface area, because of less 2D stretching. In contrast, on comparatively planar 2D-like surfaces uniaxial stretching of the cell body with strong anchoring of the filopodia, resulted in larger cell surface area, and demonstrated stronger adhesion. The difference in the results, with those previously published, may be generally attributed to, among others, the use of mouse stem cells (human osteosarcoma used here), and unannealed as-grown TiO2 NTs used previously (annealed ECMs used here).


Assuntos
Materiais Biocompatíveis/química , Nanotubos/química , Osteoblastos/citologia , Titânio/química , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Nanotubos/ultraestrutura
11.
Analyst ; 140(12): 3935-41, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25939991

RESUMO

Unmodified, as-grown few layered graphene on copper substrates have been used for glucose sensing using Raman spectroscopy. Graphene with a stronger 2D band is a better Raman enhancer with significant fluorescence suppression and finer line widths of the Raman signals. The origin of the graphene enhanced Raman spectroscopy (GERS) signal of glucose is attributed to a fractional charge transfer (calculated to be 0.006 using electrochemical parameters) between glucose and graphene aided by a possible π-π interaction. Physiological concentrations of glucose (10-500 mg dl(-1)) in PBS have been used for the study. For each glucose concentration, the spectral reproducibility is within 5-25% as calculated by the relative standard deviation of several measurements. The intensity ratio of the 1122 cm(-1) peak of glucose and the 2D peak of graphene varied linearly with the glucose concentration and can be used as a calibration curve for unknown sample measurements.


Assuntos
Glucose/análise , Grafite/química , Análise Espectral Raman/instrumentação , Soluções Tampão , Glucose/química , Temperatura , Volatilização , Água/química
12.
Biosens Bioelectron ; 70: 137-44, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25801954

RESUMO

We report the simultaneous electrochemical detection of dopamine (DA), uric acid (UA) and ascorbic acid (AA) on three dimensional (3D) unmodified 'as-grown' epitaxial graphene nanowall arrays (EGNWs). The 3D few layer EGNWs, unlike the 2D planar graphene, offers an abundance of vertically oriented nano-graphitic-edges that exhibit fast electron-transfer kinetics and high electroactive surface area to geometrical area (EAA/GA≈134%), as evident from the Fe(CN)6(3-/4-) redox kinetic study. The hexagonal sp(2)-C domains, on the basal plane of the EGNWs, facilitate efficient adsorption via spontaneous π-π interaction with the aromatic rings in DA and UA. Such affinity together with the fast electron kinetics enables simultaneous and unambiguous identification of individual AA, DA and UA from their mixture. The unique edge dominant EGNWs result in an unprecedented low limit of detection (experimental) of 0.033 nM and highest sensitivity of 476.2 µA/µM/cm(2), for UA, which are orders of magnitude higher than comparable existing reports. A reaction kinetics based modeling of the edge-oriented 3D EGNW system is proposed to illustrate the superior electro-activity for bio-sensing applications.


Assuntos
Biopolímeros/análise , Condutometria/instrumentação , Grafite/química , Imunoensaio/instrumentação , Nanopartículas/química , Compostos Orgânicos/análise , Biopolímeros/química , Misturas Complexas/análise , Misturas Complexas/química , Desenho de Equipamento , Análise de Falha de Equipamento , Microquímica/instrumentação , Nanopartículas/ultraestrutura , Compostos Orgânicos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
ACS Nano ; 9(1): 301-11, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25555063

RESUMO

Natural nanostructures in low refractive index Cicada wings demonstrate ≤ 1% reflectance over the visible spectrum. We provide design parameters for Cicada-wing-inspired nanotip arrays as efficient light harvesters over a 300-1000 nm spectrum and up to 60° angle of incidence in both low-index, such as silica and indium tin oxide, and high-index, such as silicon and germanium, photovoltaic materials. Biomimicry of the Cicada wing design, demonstrating gradient index, onto these material surfaces, either by real electron cyclotron resonance microwave plasma processing or by modeling, was carried out to achieve a target reflectance of ∼ 1%. Design parameters of spacing/wavelength and length/spacing fitted into a finite difference time domain model could simulate the experimental reflectance values observed in real silicon and germanium or in model silica and indium tin oxide nanotip arrays. A theoretical mapping of the length/spacing and spacing/wavelength space over varied refractive index materials predicts that lengths of ∼ 1.5 µm and spacings of ∼ 200 nm in high-index and lengths of ∼ 200-600 nm and spacings of ∼ 100-400 nm in low-index materials would exhibit ≤ 1% target reflectance and ∼ 99% optical absorption over the entire UV-vis region and angle of incidence up to 60°.


Assuntos
Biomimética/métodos , Hemípteros , Nanoestruturas , Fenômenos Ópticos , Asas de Animais , Animais , Refratometria
14.
J Biomed Opt ; 19(1): 011002, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23752785

RESUMO

A simple way of detecting melamine in raw milk is demonstrated via surface-enhanced Raman spectroscopy (SERS) using fractals of bare and nonfunctionalized ~30 nm gold nanoparticles (AuNP) distributed on a solid support. The technique demonstrates the formation of AuNP fractals, from a random distribution, upon exposure to melamine, that enhance the Raman scattering cross-section to enable detection by SERS. The agglomeration, which is pronounced at higher melamine concentrations, is demonstrated directly through imaging, and the red-shift of the plasmon absorption peak of the AuNP fractal away from 530 nm by finite difference time domain (FDTD) calculations. The agglomeration results in a strong plasmon field, shown by FDTD, over the interparticle sites that enhances the Raman scattering cross-section of melamine and ensures unambiguous detection. Limit of detection of 100 ppb could be achieved reproducibly.


Assuntos
Fractais , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Triazinas/análise , Animais , Simulação por Computador , Limite de Detecção , Leite/química
15.
Nano Lett ; 13(4): 1422-8, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23432577

RESUMO

A 3D trenched-structure metal-insulator-metal (MIM) nanocapacitor array with an ultrahigh equivalent planar capacitance (EPC) of ~300 µF cm(-2) is demonstrated. Zinc oxide (ZnO) and aluminum oxide (Al2O3) bilayer dielectric is deposited on 1 µm high biomimetic silicon nanotip (SiNT) substrate using the atomic layer deposition method. The large EPC is achieved by utilizing the large surface area of the densely packed SiNT (!5 × 10(10) cm(-2)) coated conformally with an ultrahigh dielectric constant of ZnO. The EPC value is 30 times higher than those previously reported in metal-insulator-metal or metal-insulator-semiconductor nanocapacitors using similar porosity dimensions of the support materials.


Assuntos
Materiais Biomiméticos , Capacitância Elétrica , Óxido de Zinco/química , Metais/química , Nanoestruturas/química , Tamanho da Partícula , Porosidade , Silício/química
16.
Nanotechnology ; 24(1): 015702, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23221149

RESUMO

Quantitative mapping of layer number and stacking order for CVD-grown graphene layers is realized by formulating Raman fingerprints obtained on two stepwise stacked graphene single-crystal domains with AB Bernal and turbostratic stacking (with ~30°interlayer rotation), respectively. The integrated peak area ratio of the G band to the Si band, A(G)/A(Si), is proven to be a good fingerprint for layer number determination, while the area ratio of the 2D and G bands, A(2D)/A(G), is shown to differentiate effectively between the two different stacking orders. The two fingerprints are well formulated and resolve, quantitatively, the layer number and stacking type of various graphene domains that used to rely on tedious transmission electron microscopy for structural analysis. The approach is also noticeable in easy discrimination of the turbostratic graphene region (~30° rotation), the structure of which resembles the well known high-mobility graphene R30/R2(±) fault pairs found on the vacuum-annealed C-face SiC and suggests an electron mobility reaching 14,700 cm(3) V(-1) s(-1). The methodology may shed light on monitoring and control of high-quality graphene growth, and thereby facilitate future mass production of potential high-speed graphene applications.

17.
J Appl Phys ; 110(8): 83104-831045, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22087050

RESUMO

The low molecular weight tris-(8-hydroxyquinoline) aluminum (Alq(3)) has been incorporated with magnesium (Mg) that altered the nature of its opto-electronic characteristics. The lowering of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in Mg:Alq(3), compared to pure Alq(3), creates a stronger field (exceeding the exciton binding energy) at the donor-acceptor junction to dissociate the photo-generated exciton and also provides a low barrier for electron transport across the device. In an electron-only device (described in the text), a current enhancement in excess of 10(3), with respect to pure Alq(3), could be observed at 10 V applied bias. Optimized Mg:Alq(3) layer, when introduced in the photovoltaic device, improves the power conversion efficiencies significantly to 0.15% compared to the pure Alq(3) device. The improvement in the photovoltaic performance has been attributed to the superior exciton dissociation and carrier transport.

18.
J Nanosci Nanotechnol ; 11(5): 3979-84, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21780395

RESUMO

Successful deep and alignment-free patterned etching on GaN using atomic force microscope (AFM) local oxidation followed by in-situ chemical etching is demonstrated. Oxide ridges are grown on GaN on an AFM by applying positive sample bias at 80% humidity, with the oxidation reaction expedited by UV light. The oxide ridges are then etched by HCl solution, leaving troughs in the GaN surface. A dripping strategy for the in-situ chemical etching is recommended that allows deep, alignment-free multiple AFM oxidation/etching works on the GaN surface without any need of substrate removal from the AFM platform. Repeated etching followed by AFM oxidation on a spot on a GaN surface resulting in a hole as deep as 800 nm was also demonstrated. Further, a preliminary evaluation of the porosity of the AFM-grown oxide indicates that the oxide ridges grown on GaN at an AFM cantilever moving speed of 300 nm/s are porous in structure, with an estimated porosity of 86%, which porosity could be reduced if longer resident time of the AFM cantilever on the target oxidation region was used.

19.
Biosens Bioelectron ; 26(5): 2413-8, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21044833

RESUMO

Label free optical sensing of adenine and thymine oligonucleotides has been achieved at the sub-picomole level using self assembled silver nanoparticles (AgNPs) decorated gold nanotip (AuNT) arrays. The platform consisting of the AuNTs not only aids in efficient bio-immobilization, but also packs AgNPs in a three dimensional high surface area workspace, assisting in surface enhanced Raman scattering (SERS). The use of sub-10 nm AgNPs with optimum inter-particle distance ensures amplification of the chemically specific Raman signals of the adsorbed adenine, thymine, cytosine and guanine molecules in SERS experiments. High temporal stability of the Raman signals ensured reliable and repeatable DNA detection even after three weeks of ambient desk-top conservation. This facile architecture, being three dimensional and non-lithographic, differs from conventional SERS platforms.


Assuntos
DNA/análise , DNA/genética , Microquímica/instrumentação , Nanopartículas/química , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Prata/química , Análise Espectral Raman/instrumentação , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Nanopartículas/ultraestrutura , Nanotecnologia/instrumentação , Coloração e Rotulagem
20.
Nanotechnology ; 21(2): 025502, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19955621

RESUMO

We introduce a platform, comprised of silver nanoparticle decorated silica nanowires (SiONWs) dispersed on fused quartz substrates, for high sensitivity surface-enhanced Raman scattering (SERS) measurements using both frontal (through the analytes) and back-face (through the transparent substrate) excitation. Quasi-quantitative SERS performances on the specialized substrate, vis-à-vis a silver deposited bare fused quartz plate, showed: (i) the suitability of the Ag modified SiONW substrate for frontal as well as back-face excitation; (ii) a wider detection range with high sensitivity to Rhodamine 6G; and (iii) good underwater metal-oxide adhesion of the specialized substrates. Capable of surviving ultrasonic cleaning, the substrate introduced is one of the few reusable low-cost Ag-based nanostructured SERS substrates, requiring only a simple silver reload process (the silver mirror reaction).


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Quartzo/química , Dióxido de Silício/química , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Luz , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Espalhamento de Radiação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...