Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Asian-Australas J Anim Sci ; 31(5): 672-676, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28231698

RESUMO

OBJECTIVE: An experiment was conducted to study the effect of a blend of essential oils (BEO) on enteric methane emission and growth performance of buffaloes (Bubalus bubalis). METHODS: Twenty one growing male buffaloes (average body weight of 279±9.3 kg) were divided in to three groups. The animals of all the three groups were fed on a ration consisting of wheat straw and concentrate mixture targeting 500 g daily live weight gain. The three dietary groups were; Group 1, control without additive; Group 2 and 3, supplemented with BEO at 0.15 and 0.30 mL/kg of dry matter intake (DMI), respectively. RESULTS: During six months feeding trial, the intake and digestibility of dry matter and nutrients (organic matter, crude protein, ether extract, neutral detergent fibre, and acid detergent fibre) were similar in all the groups. The average body weight gain was tended to improve (p = 0.084) in Group 2 and Group 3 as compared to control animals. Feeding of BEO did not affect feed conversion efficiency of the animals. The calves of all the three groups were in positive nitrogen balance with no difference in nitrogen metabolism. During respiration chamber studies the methane production (L/kg DMI and L/kg digestible dry matter intake was significantly (p<0.001) lower in Group 2 and Group 3 as compared to control animals. CONCLUSION: The results indicated that the BEO tested in the present study have shown potential to reduce enteric methane production without compromising the nutrient utilization and animal performance and could be further explored for its use as feed additive to mitigate enteric methane production in livestock.

2.
Asian-Australas J Anim Sci ; 30(12): 1702-1710, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28728376

RESUMO

OBJECTIVE: The study examined the effect of condensed tannins (CT) containing Ficus infectoria and Psidium guajava leaf meal mixture (LMM) supplementation on nutrient metabolism, methane emission and performance of lambs. METHODS: Twenty four lambs of ~6 months age (average body weight 10.1±0.60 kg) were randomly divided into 4 dietary treatments (CT-0, CT-1, CT-1.5, and CT-2 containing 0, 1.0, 1.5, and 2.0 percent CT through LMM, respectively) consisting of 6 lambs each in a completely randomized design. All the lambs were offered a basal diet of wheat straw ad libitum, oat hay (100 g/d) along with required amount of concentrate mixture to meet their nutrient requirements for a period of 6 months. After 3 months of experimental feeding, a metabolism trial of 6 days duration was conducted on all 24 lambs to determine nutrient digestibility and nitrogen balance. Urinary excretion of purine derivatives and microbial protein synthesis were determined using high performance liquid chromatography. Respiration chamber study was started at the mid of 5th month of experimental feeding trial. Whole energy balance trials were conducted on individual lamb one after the other, in an open circuit respiration calorimeter. RESULTS: Intake of dry matter and organic matter (g/d) was significantly (p<0.05) higher in CT-1.5 than control. Digestibility of various nutrients did not differ irrespective of treatments. Nitrogen retention and microbial nitrogen synthesis (g/d) was significantly (p<0.01) higher in CT-1.5 and CT-2 groups relative to CT-0. Total body weight gain (kg) and average daily gain (g) were significantly (linear, p<0.01) higher in CT-1.5 followed by CT-1 and CT-0, respectively. Feed conversion ratio (FCR) by lambs was significantly (linear, p<0.01) better in CT-1.5 followed by CT-2 and CT-0, respectively. Total wool yield (g; g/d) was linearly (p<0.05) higher for CT-1.5 than CT-0. Methane emission was linearly decreased (p<0.05) in CT groups and reduction was highest (p<0.01) in CT-2 followed by CT-1.5 and CT-1. Methane energy (kcal/d) was linearly decreased (p<0.05) in CT groups. CONCLUSION: The CT supplementation at 1% to 2% of the diet through Ficus infectoria and Psidium guajava LMM significantly improved nitrogen metabolism, growth performance, wool yield, FCR and reduced methane emission by lambs.

3.
Vet World ; 10(6): 616-622, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28717312

RESUMO

AIM: A comparative study was conducted on crossbred cattle and buffaloes to investigate the effect of feeding high and low roughage total mixed ration (TMR) diets on rumen metabolites and enzymatic profiles. MATERIALS AND METHODS: Three rumen-fistulated crossbred cattle and buffalo were randomly assigned as per 3×3 switch over design for 21-days. Three TMR diets consisting of concentrate mixture, wheat straw and green maize fodder in the ratios of (T1) 60:20:20, (T2) 40:30:30, and (T3) 20:40:40, respectively, were fed to the animals ad libitum. Rumen liquor samples were collected at 0, 2, 4, 6, and 8 h post feeding for the estimation of rumen biochemical parameters on 2 consecutive days in each trial. RESULTS: The lactic acid concentration and pH value were comparable in both species and treatments. Feed intake (99.77±2.51 g/kg body weight), ruminal ammonia nitrogen, and total nitrogen were significantly (p<0.05) higher in buffalo and in treatment group fed with high concentrate diet. Production of total volatile fatty acids (VFAs) was non-significant (p>0.05) among treatments and significantly (p<0.05) greater in crossbred cattle than buffaloes. Molar proportions of individual VFAs propionate (C3), propionate:butyrate (C3:C4), and (acetate+butyrate):propionate ([C2+C4]:C3) ratio in both crossbred cattle and buffalo were not affected by high or low roughage diet, but percentage of acetate and butyrate varied significantly (p<0.05) among treatment groups. Activities of microbial enzymes were comparable among species and different treatment groups. A total number of rumen protozoa were significantly (p<0.05) higher in crossbred cattle than buffaloes along with significantly (p<0.05) higher population in animal fed with high concentrate diet (T1). CONCLUSION: Rumen microbial population and fermentation depend on constituents of the treatment diet. However, microbial enzyme activity remains similar among species and different treatments. High concentrate diet increases number of rumen protozoa, and the number is higher in crossbred cattle than buffaloes.

4.
Asian-Australas J Anim Sci ; 29(11): 1585-1592, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26954228

RESUMO

The present experiment was conducted to evaluate the effect of simulated heat stress on digestibility and methane (CH4) emission. Four non-lactating crossbred cattle were exposed to 25°C, 30°C, 35°C, and 40°C temperature with a relative humidity of 40% to 50% in a climatic chamber from 10:00 hours to 15:00 hours every day for 27 days. The physiological responses were recorded at 15:00 hours every day. The blood samples were collected at 15:00 hours on 1st, 6th, 11th, 16th, and 21st days and serum was collected for biochemical analysis. After 21 days, fecal and feed samples were collected continuously for six days for the estimation of digestibility. In the last 48 hours gas samples were collected continuously to estimate CH4 emission. Heat stress in experimental animals at 35°C and 40°C was evident from an alteration (p<0.05) in rectal temperature, respiratory rate, pulse rate, water intake and serum thyroxin levels. The serum lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase activity and protein, urea, creatinine and triglyceride concentration changed (p<0.05), and body weight of the animals decreased (p<0.05) after temperature exposure at 40°C. The dry matter intake (DMI) was lower (p<0.05) at 40°C exposure. The dry matter and neutral detergent fibre digestibilities were higher (p<0.05) at 35°C compared to 25°C and 30°C exposure whereas, organic matter (OM) and acid detergent fibre digestibilities were higher (p<0.05) at 35°C than 40°C thermal exposure. The CH4 emission/kg DMI and organic matter intake (OMI) declined (p<0.05) with increase in exposure temperature and reached its lowest levels at 40°C. It can be concluded from the present study that the digestibility and CH4 emission were affected by intensity of heat stress. Further studies are necessary with respect to ruminal microbial changes to justify the variation in the digestibility and CH4 emission during differential heat stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA