Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4403, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782907

RESUMO

Controlled manipulation of cultured cells by delivery of exogenous macromolecules is a cornerstone of experimental biology. Here we describe a platform that uses nanopipettes to deliver defined numbers of macromolecules into cultured cell lines and primary cells at single molecule resolution. In the nanoinjection platform, the nanopipette is used as both a scanning ion conductance microscope (SICM) probe and an injection probe. The SICM is used to position the nanopipette above the cell surface before the nanopipette is inserted into the cell into a defined location and to a predefined depth. We demonstrate that the nanoinjection platform enables the quantitative delivery of DNA, globular proteins, and protein fibrils into cells with single molecule resolution and that delivery results in a phenotypic change in the cell that depends on the identity of the molecules introduced. Using experiments and computational modeling, we also show that macromolecular crowding in the cell increases the signal-to-noise ratio for the detection of translocation events, thus the cell itself enhances the detection of the molecules delivered.


Assuntos
DNA , Imagem Individual de Molécula , Humanos , Imagem Individual de Molécula/métodos , DNA/metabolismo , DNA/química , Animais , Nanotecnologia/métodos , Proteínas/metabolismo , Proteínas/química , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/química , Razão Sinal-Ruído
2.
Sci Adv ; 10(10): eadl0515, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446884

RESUMO

Single-cell RNA sequencing has revolutionized our understanding of cellular heterogeneity, but routine methods require cell lysis and fail to probe the dynamic trajectories responsible for cellular state transitions, which can only be inferred. Here, we present a nanobiopsy platform that enables the injection of exogenous molecules and multigenerational longitudinal cytoplasmic sampling from a single cell and its progeny. The technique is based on scanning ion conductance microscopy (SICM) and, as a proof of concept, was applied to longitudinally profile the transcriptome of single glioblastoma (GBM) brain tumor cells in vitro over 72 hours. The GBM cells were biopsied before and after exposure to chemotherapy and radiotherapy, and our results suggest that treatment either induces or selects for more transcriptionally stable cells. We envision the nanobiopsy will contribute to transforming standard single-cell transcriptomics from a static analysis into a dynamic assay.


Assuntos
Perfilação da Expressão Gênica , Glioblastoma , Humanos , Citoplasma , Transcriptoma , Citosol , Bioensaio , Glioblastoma/genética
3.
ACS Appl Mater Interfaces ; 16(10): 13006-13017, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38414331

RESUMO

Organs-on-chips (OoCs) support an organotypic human cell culture in vitro. Precise representation of basement membranes (BMs) is critical for mimicking physiological functions of tissue interfaces. Artificial membranes in polyester (PES) and polycarbonate (PC) commonly used in in vitro models and OoCs do not replicate the characteristics of the natural BMs, such as submicrometric thickness, selective permeability, and elasticity. This study introduces porous poly(d,l-lactic acid) (PDLLA) nanofilms for replicating BMs in in vitro models and demonstrates their integration into microfluidic chips. Using roll-to-roll gravure coating and polymer phase separation, we fabricated transparent ∼200 nm thick PDLLA films. These nanofilms are 60 times thinner and 27 times more elastic than PES membranes and show uniformly distributed pores of controlled diameter (0.4 to 1.6 µm), which favor cell compartmentalization and exchange of large water-soluble molecules. Human umbilical vein endothelial cells (HUVECs) on PDLLA nanofilms stretched across microchannels exhibited 97% viability, enhanced adhesion, and a higher proliferation rate compared to their performance on PES membranes and glass substrates. After 5 days of culture, HUVECs formed a functional barrier on suspended PDLLA nanofilms, confirmed by a more than 10-fold increase in transendothelial electrical resistance and blocked 150 kDa dextran diffusion. When integrated between two microfluidic channels and exposed to physiological shear stress, despite their ultrathin thickness, PDLLA nanofilms upheld their integrity and efficiently maintained separation of the channels. The successful formation of an adherent endothelium and the coculture of HUVECs and human astrocytes on either side of the suspended nanofilm validate it as an artificial BM for OoCs. Its submicrometric thickness guarantees intimate contact, a key feature to mimic the blood-brain barrier and to study paracrine signaling between the two cell types. In summary, porous PDLLA nanofilms hold the potential for improving the accuracy and physiological relevance of the OoC as in vitro models and drug discovery tools.


Assuntos
Polímeros , Humanos , Membrana Basal , Porosidade , Polímeros/química , Endotélio , Células Endoteliais da Veia Umbilical Humana
4.
Small ; : e2308776, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054620

RESUMO

DNA origami synthesis is a well-established technique with wide-ranging applications. In most cases, the synthesized origami must be purified to remove excess materials such as DNA oligos and other functional molecules. While several purification techniques are routinely used, all have limitations, and cannot be integrated with robotic systems. Here the use of solid-phase reversible immobilization (SPRI) beads as a scalable, high-throughput, and automatable method to purify DNA origami is demonstrated. Not only can this method remove unreacted oligos and biomolecules with yields comparable to existing methods while maintaining the high structural integrity of the origami, but it can also be integrated into an automated workflow to purify simultaneously large numbers and quantities of samples. It is envisioned that the SPRI beads purification method will improve the scalability of DNA nanostructures synthesis both for research and commercial applications.

5.
ACS Nanosci Au ; 3(2): 172-181, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37096230

RESUMO

Solid-state nanopores have been widely employed in the detection of biomolecules, but low signal-to-noise ratios still represent a major obstacle in the discrimination of nucleic acid and protein sequences substantially smaller than the nanopore diameter. The addition of 50% poly(ethylene) glycol (PEG) to the external solution is a simple way to enhance the detection of such biomolecules. Here, we demonstrate with finite-element modeling and experiments that the addition of PEG to the external solution introduces a strong imbalance in the transport properties of cations and anions, drastically affecting the current response of the nanopore. We further show that the strong asymmetric current response is due to a polarity-dependent ion distribution and transport at the nanopipette tip region, leading to either ion depletion or enrichment for few tens of nanometers across its aperture. We provide evidence that a combination of the decreased/increased diffusion coefficients of cations/anions in the bath outside the nanopore and the interaction between a translocating molecule and the nanopore-bath interface is responsible for the increase in the translocation signals. We expect this new mechanism to contribute to further developments in nanopore sensing by suggesting that tuning the diffusion coefficients of ions could enhance the sensitivity of the system.

6.
ACS Nano ; 16(12): 20075-20085, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36279181

RESUMO

Nanopore systems have emerged as a leading platform for the analysis of biomolecular complexes with single-molecule resolution. The conformation of biomolecules, such as RNA, is highly dependent on the electrolyte composition, but solid-state nanopore systems often require high salt concentration to operate, precluding analysis of macromolecular conformations under physiologically relevant conditions. Here, we report the implementation of a polymer-electrolyte solid-state nanopore system based on alkali metal halide salts dissolved in 50% w/v poly(ethylene) glycol (PEG) to augment the performance of our system. We show that polymer-electrolyte bath governs the translocation dynamics of the analyte which correlates with the physical properties of the salt used in the bath. This allowed us to identify CsBr as the optimal salt to complement PEG to generate the largest signal enhancement. Harnessing the effects of the polymer-electrolyte, we probed the conformations of the Chikungunya virus (CHIKV) RNA genome fragments under physiologically relevant conditions. Our system was able to fingerprint CHIKV RNA fragments ranging from ∼300 to ∼2000 nt length and subsequently distinguish conformations between the co-transcriptionally folded and the natively refolded ∼2000 nt CHIKV RNA. We envision that the polymer-electrolyte solid-state nanopore system will further enable structural and conformational analyses of individual biomolecules under physiologically relevant conditions.


Assuntos
Nanoporos , Polímeros/química , Polietilenoglicóis/química , Eletrólitos/química , Conformação de Ácido Nucleico
7.
Nano Lett ; 20(7): 5553-5561, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32559088

RESUMO

Nanopore analysis of nucleic acid is now routine, but detection of proteins remains challenging. Here, we report the systematic characterization of the effect of macromolecular crowding on the detection sensitivity of a solid-state nanopore for circular and linearized DNA plasmids, globular proteins (ß-galactosidase), and filamentous proteins (α-synuclein amyloid fibrils). We observe a remarkable ca. 1000-fold increase in the molecule count for the globular protein ß-galactosidase and a 6-fold increase in peak amplitude for plasmid DNA under crowded conditions. We also demonstrate that macromolecular crowding facilitates the study of the topology of DNA plasmids and the characterization of amyloid fibril preparations with different length distributions. A remarkable feature of this method is its ease of use; it simply requires the addition of a macromolecular crowding agent to the electrolyte. We therefore envision that macromolecular crowding can be applied to many applications in the analysis of biomolecules by solid-state nanopores.


Assuntos
Nanoporos , Amiloide , DNA , alfa-Sinucleína/genética
8.
Biochem Soc Trans ; 48(2): 357-365, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32267469

RESUMO

The manipulation of cultured mammalian cells by the delivery of exogenous macromolecules is one of the cornerstones of experimental cell biology. Although the transfection of cells with DNA expressions constructs that encode proteins is routine and simple to perform, the direct delivery of proteins into cells has many advantages. For example, proteins can be chemically modified, assembled into defined complexes and subject to biophysical analyses prior to their delivery into cells. Here, we review new approaches to the injection and electroporation of proteins into cultured cells. In particular, we focus on how recent developments in nanoscale injection probes and localized electroporation devices enable proteins to be delivered whilst minimizing cellular damage. Moreover, we discuss how nanopore sensing may ultimately enable the quantification of protein delivery at single-molecule resolution.


Assuntos
Eletroporação/métodos , Nanoporos , Nanotecnologia/métodos , Animais , Membrana Celular/metabolismo , Sobrevivência Celular , DNA/química , Eletroporação/tendências , Humanos , Nanopartículas , Nanotecnologia/tendências , Permeabilidade , Fenótipo , Transporte Proteico , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA