Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Commun Med (Lond) ; 4(1): 42, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472334

RESUMO

BACKGROUND: Hyperthyroidism is frequently under-recognized and leads to heart failure and mortality. Timely identification of high-risk patients is a prerequisite to effective antithyroid therapy. Since the heart is very sensitive to hyperthyroidism and its electrical signature can be demonstrated by electrocardiography, we developed an artificial intelligence model to detect hyperthyroidism by electrocardiography and examined its potential for outcome prediction. METHODS: The deep learning model was trained using a large dataset of 47,245 electrocardiograms from 33,246 patients at an academic medical center. Patients were included if electrocardiograms and measurements of serum thyroid-stimulating hormone were available that had been obtained within a three day period. Serum thyroid-stimulating hormone and free thyroxine were used to define overt and subclinical hyperthyroidism. We tested the model internally using 14,420 patients and externally using two additional test sets comprising 11,498 and 596 patients, respectively. RESULTS: The performance of the deep learning model achieves areas under the receiver operating characteristic curves (AUCs) of 0.725-0.761 for hyperthyroidism detection, AUCs of 0.867-0.876 for overt hyperthyroidism, and AUC of 0.631-0.701 for subclinical hyperthyroidism, superior to a traditional features-based machine learning model. Patients identified as hyperthyroidism-positive by the deep learning model have a significantly higher risk (1.97-2.94 fold) of all-cause mortality and new-onset heart failure compared to hyperthyroidism-negative patients. This cardiovascular disease stratification is particularly pronounced in subclinical hyperthyroidism, surpassing that observed in overt hyperthyroidism. CONCLUSIONS: An innovative algorithm effectively identifies overt and subclinical hyperthyroidism and contributes to cardiovascular risk assessment.


Hyperthyroidism occurs when the thyroid gland produces too much hormone and can cause various symptoms including faster heartbeat, weight loss, and nervousness. Diagnosis is often missed, which can lead to heart problems and even death. Measurements of the heart's electrical activity can be obtained using Electrocardiograms (ECGs). We made a computational model that can detect hyperthyroidism from ECGs. Our model was better able to identify people with hyperthyroidism than currently available methods, especially the more severe forms of the condition. If future work demonstrates our model is safe and accurate, it could potentially be used to detect hyperthyroidism sooner, enabling faster treatment and improved health of people with hyperthyroidism.

2.
Front Comput Neurosci ; 17: 1286681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045092

RESUMO

[This corrects the article DOI: 10.3389/fncom.2023.1108889.].

3.
J Neural Eng ; 20(6)2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38128128

RESUMO

Objective.While electroencephalography (EEG)-based brain-computer interfaces (BCIs) have many potential clinical applications, their use is impeded by poor performance for many users. To improve BCI performance, either via enhanced signal processing or user training, it is critical to understand and describe each user's ability to perform mental control tasks and produce discernible EEG patterns. While classification accuracy has predominantly been used to assess user performance, limitations and criticisms of this approach have emerged, thus prompting the need to develop novel user assessment approaches with greater descriptive capability. Here, we propose a combination of unsupervised clustering and Markov chain models to assess and describe user skill.Approach.Using unsupervisedK-means clustering, we segmented the EEG signal space into regions representing pattern states that users could produce. A user's movement through these pattern states while performing different tasks was modeled using Markov chains. Finally, using the steady-state distributions and entropy rates of the Markov chains, we proposed two metricstaskDistinctandrelativeTaskInconsistencyto assess, respectively, a user's ability to (i) produce distinct task-specific patterns for each mental task and (ii) maintain consistent patterns during individual tasks.Main results.Analysis of data from 14 adolescents using a three-class BCI revealed significant correlations between thetaskDistinctandrelativeTaskInconsistencymetrics and classification F1 score. Moreover, analysis of the pattern states and Markov chain models yielded descriptive information regarding user performance not immediately apparent from classification accuracy.Significance.Our proposed user assessment method can be used in concert with classifier-based analysis to further understand the extent to which users produce task-specific, time-evolving EEG patterns. In turn, this information could be used to enhance user training or classifier design.


Assuntos
Interfaces Cérebro-Computador , Adolescente , Humanos , Cadeias de Markov , Eletroencefalografia/métodos , Imagens, Psicoterapia , Movimento , Encéfalo
4.
Int J Neural Syst ; 33(9): 2350048, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37522623

RESUMO

Brain-computer interfaces (BCIs) provide communicative alternatives to those without functional speech. Covert speech (CS)-based BCIs enable communication simply by thinking of words and thus have intuitive appeal. However, an elusive barrier to their clinical translation is the collection of voluminous examples of high-quality CS signals, as iteratively rehearsing words for long durations is mentally fatiguing. Research on CS and speech perception (SP) identifies common spatiotemporal patterns in their respective electroencephalographic (EEG) signals, pointing towards shared encoding mechanisms. The goal of this study was to investigate whether a model that leverages the signal similarities between SP and CS can differentiate speech-related EEG signals online. Ten participants completed a dyadic protocol where in each trial, they listened to a randomly selected word and then subsequently mentally rehearsed the word. In the offline sessions, eight words were presented to participants. For the subsequent online sessions, the two most distinct words (most separable in terms of their EEG signals) were chosen to form a ternary classification problem (two words and rest). The model comprised a functional mapping derived from SP and CS signals of the same speech token (features are extracted via a Riemannian approach). An average ternary online accuracy of 75.3% (60% chance level) was achieved across participants, with individual accuracies as high as 93%. Moreover, we observed that the signal-to-noise ratio (SNR) of CS signals was enhanced by perception-covert modeling according to the level of high-frequency ([Formula: see text]-band) correspondence between CS and SP. These findings may lead to less burdensome data collection for training speech BCIs, which could eventually enhance the rate at which the vocabulary can grow.


Assuntos
Interfaces Cérebro-Computador , Percepção da Fala , Humanos , Fala , Eletroencefalografia/métodos , Vocabulário , Percepção Auditiva
6.
Eur J Neurosci ; 58(1): 2367-2383, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37164644

RESUMO

As with typically developing children, children with cerebral palsy and autism spectrum disorder develop important socio-emotional rapport with their parents and healthcare providers. However, the neural mechanisms underlying these relationships have been less studied. By simultaneously measuring the brain activity of multiple individuals, interbrain synchronization could serve as a neurophysiological marker of social-emotional responses. Music evokes emotional and physiological responses and enhances social cohesion. These characteristics of music have fostered its deployment as a therapeutic medium in clinical settings. Therefore, this study investigated two aspects of interbrain synchronization, namely, its phase and directionality, in child-parent (CP) and child-therapist (CT) dyads during music and storytelling sessions (as a comparison). A total of 17 participants (seven cerebral palsy or autism spectrum disorder children [aged 12-18 years], their parents, and three neurologic music therapists) completed this study, comprising seven CP and seven CT dyads. Each music therapist worked with two or three children. We found that session type, dyadic relationship, frequency band, and brain region were significantly related to the degree of interbrain synchronization and its directionality. Particularly, music sessions and CP dyads were associated with higher interbrain synchronization and stronger directionality. Delta (.5-4 Hz) range showed the highest phase locking value in both CP and CT dyads in frontal brain regions. It appears that synchronization is directed predominantly from parent to child, that is, parents and music therapists' brain activity tended to influence a child's. Our findings encourage further research into neural synchrony in children with disabilities, especially in musical contexts, and its implications for social and emotional development.


Assuntos
Transtorno do Espectro Autista , Paralisia Cerebral , Crianças com Deficiência , Música , Humanos , Transtorno do Espectro Autista/terapia , Diencéfalo , Pais/psicologia
7.
Front Comput Neurosci ; 17: 1108889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860616

RESUMO

Despite growing interest and research into brain-computer interfaces (BCI), their usage remains limited outside of research laboratories. One reason for this is BCI inefficiency, the phenomenon where a significant number of potential users are unable to produce machine-discernible brain signal patterns to control the devices. To reduce the prevalence of BCI inefficiency, some have advocated for novel user-training protocols that enable users to more effectively modulate their neural activity. Important considerations for the design of these protocols are the assessment measures that are used for evaluating user performance and for providing feedback that guides skill acquisition. Herein, we present three trial-wise adaptations (running, sliding window and weighted average) of Riemannian geometry-based user-performance metrics (classDistinct reflecting the degree of class separability and classStability reflecting the level of within-class consistency) to enable feedback to the user following each individual trial. We evaluated these metrics, along with conventional classifier feedback, using simulated and previously recorded sensorimotor rhythm-BCI data to assess their correlation with and discrimination of broader trends in user performance. Analysis revealed that the sliding window and weighted average variants of our proposed trial-wise Riemannian geometry-based metrics more accurately reflected performance changes during BCI sessions compared to conventional classifier output. The results indicate the metrics are a viable method for evaluating and tracking user performance changes during BCI-user training and, therefore, further investigation into how these metrics may be presented to users during training is warranted.

8.
Front Hum Neurosci ; 16: 938708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211121

RESUMO

Brain-computer interfaces (BCIs) are being investigated as an access pathway to communication for individuals with physical disabilities, as the technology obviates the need for voluntary motor control. However, to date, minimal research has investigated the use of BCIs for children. Traditional BCI communication paradigms may be suboptimal given that children with physical disabilities may face delays in cognitive development and acquisition of literacy skills. Instead, in this study we explored emotional state as an alternative access pathway to communication. We developed a pediatric BCI to identify positive and negative emotional states from changes in hemodynamic activity of the prefrontal cortex (PFC). To train and test the BCI, 10 neurotypical children aged 8-14 underwent a series of emotion-induction trials over four experimental sessions (one offline, three online) while their brain activity was measured with functional near-infrared spectroscopy (fNIRS). Visual neurofeedback was used to assist participants in regulating their emotional states and modulating their hemodynamic activity in response to the affective stimuli. Child-specific linear discriminant classifiers were trained on cumulatively available data from previous sessions and adaptively updated throughout each session. Average online valence classification exceeded chance across participants by the last two online sessions (with 7 and 8 of the 10 participants performing better than chance, respectively, in Sessions 3 and 4). There was a small significant positive correlation with online BCI performance and age, suggesting older participants were more successful at regulating their emotional state and/or brain activity. Variability was seen across participants in regards to BCI performance, hemodynamic response, and discriminatory features and channels. Retrospective offline analyses yielded accuracies comparable to those reported in adult affective BCI studies using fNIRS. Affective fNIRS-BCIs appear to be feasible for school-aged children, but to further gauge the practical potential of this type of BCI, replication with more training sessions, larger sample sizes, and end-users with disabilities is necessary.

9.
Clin Chim Acta ; 536: 126-134, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167147

RESUMO

CONTEXT: Abnormal serum calcium concentrations affect the heart and may alter the electrocardiogram (ECG), but the detection of hypocalcemia and hypercalcemia (collectively dyscalcemia) relies on blood laboratory tests requiring turnaround time. OBJECTIVE: The study aimed to develop a bloodless artificial intelligence (AI)-enabled (ECG) method to rapidly detect dyscalcemia and analyze its possible utility for outcome prediction. METHODS: This study collected 86,731 development, 15,611 tuning, 11,105 internal validation, and 8401 external validation ECGs from electronic medical records with at least 1 ECG associated with an albumin-adjusted calcium (aCa) value within 4 h. The main outcomes were to assess the accuracy of AI-ECG to predict aCa and follow up these patients for all-cause mortality, new-onset acute myocardial infraction (AMI), and new-onset heart failure (HF) to validate the ability of AI-ECG-aCa for previvor identification. RESULTS: ECG-aCa had mean absolute errors (MAE) of 0.78/0.98 mg/dL and achieved an area under receiver operating characteristic curves (AUCs) 0.9219/0.8447 and 0.8948/0.7723 to detect severe hypercalcemia and hypocalcemia in the internal/external validation sets, respectively. Although < 20 % variance of ECG-aCa could be explained by traditional ECG features, the ECG-aCa was found to be associated with more complications. Patients with ECG-hypercalcemia but initially normal aCa were found to have a higher risk of subsequent all-cause mortality [hazard ratio (HR): 2.05, 95 % conference interval (CI): 1.55-2.70], new-onset AMI (HR: 2.88, 95 % CI: 1.72-4.83), and new-onset HF (HR: 2.02, 95 % CI: 1.38-2.97) in the internal validation set, which were also seen in external validation. CONCLUSION: The AI-ECG-aCa may help detecting severe dyscalcemia for early diagnosis and ECG-hypercalcemia also has prognostic value for clinical outcomes (all-cause mortality and new-onset AMI and HF).


Assuntos
Insuficiência Cardíaca , Hipercalcemia , Hipocalcemia , Albuminas , Inteligência Artificial , Cálcio , Eletrocardiografia , Insuficiência Cardíaca/diagnóstico , Humanos , Hipocalcemia/diagnóstico , Prognóstico
10.
Front Comput Neurosci ; 16: 875282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782087

RESUMO

The study of brain-to-brain synchrony has a burgeoning application in the brain-computer interface (BCI) research, offering valuable insights into the neural underpinnings of interacting human brains using numerous neural recording technologies. The area allows exploring the commonality of brain dynamics by evaluating the neural synchronization among a group of people performing a specified task. The growing number of publications on brain-to-brain synchrony inspired the authors to conduct a systematic review using the PRISMA protocol so that future researchers can get a comprehensive understanding of the paradigms, methodologies, translational algorithms, and challenges in the area of brain-to-brain synchrony research. This review has gone through a systematic search with a specified search string and selected some articles based on pre-specified eligibility criteria. The findings from the review revealed that most of the articles have followed the social psychology paradigm, while 36% of the selected studies have an application in cognitive neuroscience. The most applied approach to determine neural connectivity is a coherence measure utilizing phase-locking value (PLV) in the EEG studies, followed by wavelet transform coherence (WTC) in all of the fNIRS studies. While most of the experiments have control experiments as a part of their setup, a small number implemented algorithmic control, and only one study had interventional or a stimulus-induced control experiment to limit spurious synchronization. Hence, to the best of the authors' knowledge, this systematic review solely contributes to critically evaluating the scopes and technological advances of brain-to-brain synchrony to allow this discipline to produce more effective research outcomes in the remote future.

11.
Dev Neurorehabil ; 25(6): 426-432, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35341463

RESUMO

Shared emotional experiences during musical activities among musicians can be coupled with brainwave synchronization. For non-speaking individuals with CP, verbal communication may be limited in expressing mutual empathy. Therefore, this case study explored interbrain synchronization among a non-speaking CP (female, 18 yrs), her parent, and a music therapist by measuring their brainwaves simultaneously during four music and four storytelling sessions. In only the youth-parent dyad, we observed a significantly higher level of interbrain synchronization during music rather than story-telling condition. However, in both the youth-parent and youth-therapist dyad, regardless of condition type, significant interbrain synchronization emerged in frontal and temporal lobes in the low-frequency bands, which are associated with socio-emotional responses. Although interbrain synchronization may have been induced by multiple factors (e.g., external stimuli, shared empathetic experiences, and internal physiological rhythms), the music activity setting deserves further study as a potential facilitator of neurophysiological synchrony between youth with CP and caregivers/healthcare providers.


Assuntos
Paralisia Cerebral , Música , Adolescente , Encéfalo , Diencéfalo , Eletroencefalografia , Feminino , Humanos , Pais
12.
NPJ Digit Med ; 5(1): 8, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046489

RESUMO

Dyskalemias are common electrolyte disorders associated with high cardiovascular risk. Artificial intelligence (AI)-assisted electrocardiography (ECG) has been evaluated as an early-detection approach for dyskalemia. The aims of this study were to determine the clinical accuracy of AI-assisted ECG for dyskalemia and prognostic ability on clinical outcomes such as all-cause mortality, hospitalizations, and ED revisits. This retrospective cohort study was done at two hospitals within a health system from May 2019 to December 2020. In total, 26,499 patients with 34,803 emergency department (ED) visits to an academic medical center and 6492 ED visits from 4747 patients to a community hospital who had a 12-lead ECG to estimate ECG-K+ and serum laboratory potassium measurement (Lab-K+) within 1 h were included. ECG-K+ had mean absolute errors (MAEs) of ≤0.365 mmol/L. Area under receiver operating characteristic curves for ECG-K+ to predict moderate-to-severe hypokalemia (Lab-K+ ≤3 mmol/L) and moderate-to-severe hyperkalemia (Lab-K+ ≥ 6 mmol/L) were >0.85 and >0.95, respectively. The U-shaped relationships between K+ concentration and adverse outcomes were more prominent for ECG-K+ than for Lab-K+. ECG-K+ and Lab-K+ hyperkalemia were associated with high HRs for 30-day all-cause mortality. Compared to hypokalemic Lab-K+, patients with hypokalemic ECG-K+ had significantly higher risk for adverse outcomes after full confounder adjustment. In addition, patients with normal Lab-K+ but dyskalemic ECG-K+ (pseudo-positive) also exhibited more co-morbidities and had worse outcomes. Point-of-care bloodless AI ECG-K+ not only rapidly identified potentially severe hypo- and hyperkalemia, but also may serve as a biomarker for medical complexity and an independent predictor for adverse outcomes.

13.
Brain Res ; 1781: 147778, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007548

RESUMO

Covert speech, the mental imagery of speaking, has been studied increasingly to understand and decode thoughts in the context of brain-computer interfaces. In studies of speech comprehension, neural oscillations are thought to play a key role in the temporal encoding of speech. However, little is known about the role of oscillations in covert speech. In this study, we investigated the oscillatory involvements in covert speech and speech perception. Data were collected from 10 participants with 64 channel EEG. Participants heard the words, 'blue' and 'orange', and subsequently mentally rehearsed them. First, continuous wavelet transform was performed on epoched signals and subsequently two-tailed t-tests between two classes (tasks) were conducted to determine statistical differences in frequency and time (t-CWT). In the current experiment, a task comprised speech perception or covert rehearsal of a word while a condition was the discrimination between tasks. Features were extracted using t-CWT and subsequently classified using a support vector machine. θ and γ phase amplitude coupling (PAC) was also assessed within tasks and across conditions between perception and covert activities (i.e. cross-task). All binary classifications accuracies (80-90%) significantly exceeded chance level, supporting the use of t-CWT in determining relative oscillatory involvements. While the perception condition dynamically invoked all frequencies with more prominent θ and α activity, the covert condition favoured higher frequencies with significantly higher γ activity than perception. Moreover, the perception condition produced significant θ-γ PAC, possibly corroborating a reported linkage between syllabic and phonemic sampling. Although this coupling was found to be suppressed in the covert condition, we found significant cross-task coupling between perception θ and covert speech γ. Covert speech processing appears to be largely associated with higher frequencies of EEG. Importantly, the significant cross-task coupling between speech perception and covert speech, in the absence of within-task covert speech PAC, seems to support the notion that the γ- and θ-bands reflect, respectively, shared and unique encoding processes across tasks.


Assuntos
Interfaces Cérebro-Computador , Percepção da Fala , Eletroencefalografia , Humanos , Fala , Análise de Ondaletas
14.
PLoS One ; 16(9): e0257029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34478466

RESUMO

Self-reporting of pain can be difficult in populations with communication challenges or atypical sensory processing, such as children with autism spectrum disorder (ASD). Consequently, pain can go untreated. An objective method to identify discomfort would be valuable to individuals unable to express or recognize their own bodily distress. Near-infrared spectroscopy (NIRS) is a brain-imaging modality that is suited for this application. We evaluated the potential of detecting a cortical response to discomfort in the ASD population using NIRS. Using a continuous-wave spectrometer, prefrontal and parietal measures were collected from 15 males with ASD and 7 typically developing (TD) males 10-15 years of age. Participants were exposed to a noxious cold stimulus by immersing their hands in cold water and tepid water as a baseline task. Across all participants, the magnitude and timing of the cold and tepid water-induced brain responses were significantly different (p < 0.001). The effect of the task on the brain response depended on the study group (group x task: p < 0.001), with the ASD group exhibiting a blunted response to the cold stimulus. Findings suggest that NIRS may serve as a tool for objective pain assessment and atypical sensory processing.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Sensação/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho , Adolescente , Transtorno do Espectro Autista/diagnóstico , Encéfalo/diagnóstico por imagem , Criança , Temperatura Baixa , Humanos , Dor/fisiopatologia , Fatores de Tempo
15.
Front Hum Neurosci ; 15: 643294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335203

RESUMO

Brain-computer interfaces (BCIs) represent a new frontier in the effort to maximize the ability of individuals with profound motor impairments to interact and communicate. While much literature points to BCIs' promise as an alternative access pathway, there have historically been few applications involving children and young adults with severe physical disabilities. As research is emerging in this sphere, this article aims to evaluate the current state of translating BCIs to the pediatric population. A systematic review was conducted using the Scopus, PubMed, and Ovid Medline databases. Studies of children and adolescents that reported BCI performance published in English in peer-reviewed journals between 2008 and May 2020 were included. Twelve publications were identified, providing strong evidence for continued research in pediatric BCIs. Research evidence was generally at multiple case study or exploratory study level, with modest sample sizes. Seven studies focused on BCIs for communication and five on mobility. Articles were categorized and grouped based on type of measurement (i.e., non-invasive and invasive), and the type of brain signal (i.e., sensory evoked potentials or movement-related potentials). Strengths and limitations of studies were identified and used to provide requirements for clinical translation of pediatric BCIs. This systematic review presents the state-of-the-art of pediatric BCIs focused on developing advanced technology to support children and youth with communication disabilities or limited manual ability. Despite a few research studies addressing the application of BCIs for communication and mobility in children, results are encouraging and future works should focus on customizable pediatric access technologies based on brain activity.

16.
J Endocr Soc ; 5(9): bvab120, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34308091

RESUMO

CONTEXT: Thyrotoxic periodic paralysis (TPP) characterized by acute weakness, hypokalemia, and hyperthyroidism is a medical emergency with a great challenge in early diagnosis since most TPP patients do not have overt symptoms. OBJECTIVE: This work aims to assess artificial intelligence (AI)-assisted electrocardiography (ECG) combined with routine laboratory data in the early diagnosis of TPP. METHODS: A deep learning model (DLM) based on ECG12Net, an 82-layer convolutional neural network, was constructed to detect hypokalemia and hyperthyroidism. The development cohort consisted of 39 ECGs from patients with TPP and 502 ECGs of hypokalemic controls; the validation cohort consisted of 11 ECGs of TPP patients and 36 ECGs of non-TPP individuals with weakness. The AI-ECG-based TPP diagnostic process was then consecutively evaluated in 22 male patients with TTP-like features. RESULTS: In the validation cohort, the DLM-based ECG system detected all cases of hypokalemia in TPP patients with a mean absolute error of 0.26 mEq/L and diagnosed TPP with an area under curve (AUC) of approximately 80%, surpassing the best standard ECG parameter (AUC = 0.7285 for the QR interval). Combining the AI predictions with the estimated glomerular filtration rate and serum chloride boosted the diagnostic accuracy of the algorithm to AUC 0.986. In the prospective study, the integrated AI and routine laboratory diagnostic system had a PPV of 100% and F-measure of 87.5%. CONCLUSION: An AI-ECG system reliably identifies hypokalemia in patients with paralysis, and integration with routine blood chemistries provides valuable decision support for the early diagnosis of TPP.

17.
Front Neurosci ; 15: 531915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994913

RESUMO

Although physiological synchronization has been associated with the level of empathy in emotionally meaningful relationships, little is known about the interbrain synchrony between non-speaking children with severe disabilities and their familial caregivers. In a repeated measures observational study, we ascertained the degree of interbrain synchrony during music therapy in 10 child-parent dyads, where the children were non-speaking and living with severe motor impairments. Interbrain synchrony was quantified via measurements of spectral coherence and Granger causality between child and parent electroencephalographic (EEG) signals collected during ten 15-min music therapy sessions per dyad, where parents were present as non-participating, covert observers. Using cluster-based permutation tests, we found significant child-parent interbrain synchrony, manifesting most prominently across dyads in frontal brain regions within ß and low γ frequencies. Specifically, significant dyadic coherence was observed contra-laterally, between child frontal right and parental frontal left regions at ß and lower γ bands in empathy-related brain areas. Furthermore, significant Granger influences were detected bidirectionally (from child to parent and vice versa) in the same frequency bands. In all dyads, significant increases in session-specific coherence and Granger influences were observed over the time course of a music therapy session. The observed interbrain synchrony suggests a cognitive-emotional coupling during music therapy between child and parent that is responsive to change. These findings encourage further study of the socio-empathic capacity and interpersonal relationships formed between caregivers and non-speaking children with severe physical impairments.

18.
Dev Med Child Neurol ; 63(6): 637-648, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33421120

RESUMO

AIM: To assess the sensitivity and specificity of automated movement recognition in predicting motor impairment in high-risk infants. METHOD: We searched MEDLINE, Embase, PsycINFO, CINAHL, Web of Science, and Scopus databases and identified additional studies from the references of relevant studies. We included studies that evaluated automated movement recognition in high-risk infants to predict motor impairment, including cerebral palsy (CP) and non-CP motor impairments. Two authors independently assessed studies for inclusion, extracted data, and assessed methodological quality using the Quality Assessment of Diagnostic Accuracy Studies-2. Meta-analyses were performed using hierarchical summary receiver operating characteristic models. RESULTS: Of 6536 articles, 13 articles assessing 59 movement variables in 1248 infants under 5 months corrected age were included. Of these, 143 infants had CP. The overall sensitivity and specificity for motor impairment were 0.73 (95% confidence interval [CI] 0.68-0.77) and 0.70 (95% CI 0.65-0.75) respectively. Comparatively, clinical General Movements Assessment (GMA) was found to have sensitivity and specificity of 98% (95% CI 74-100) and 91% (95% CI 83-93) respectively. Sensor-based technologies had higher specificity (0.88, 95% CI 0.80-0.93). INTERPRETATION: Automated movement recognition technology remains inferior to clinical GMA. The strength of this study is its meta-analysis to summarize performance, although generalizability of these results is limited by study heterogeneity.


Assuntos
Transtornos Motores/diagnóstico , Movimento/fisiologia , Humanos , Lactente , Transtornos Motores/fisiopatologia , Sensibilidade e Especificidade
19.
Dev Neurorehabil ; 24(3): 187-198, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33012188

RESUMO

A concussion is known as a functional injury affecting brain communication, integration, and processing. There is a need to objectively measure how concussions disrupt brain activation while completing ecologically relevant tasks.The objective of this study was to compare brain activation patterns between concussion and comparison groups (non-concussed youth) during a cognitive-motor single and dual-task paradigm utilizing functional near-infrared spectroscopy (fNIRS) in regions of the frontal-parietal attention network and compared to task performance.Youth with concussion generally exhibited hyperactivation and recruitment of additional brain regions in the dorsal lateral prefrontal (DLPFC), superior (SPC) and inferior parietal cortices (IPC), which are associated with processing, information integration, and response selection. Additionally, hyper- or hypo-activation patterns were associated with slower processing speed on the cognitive task. Our findings corroborate the growing literature suggesting that neural recovery may be delayed compared to the restoration of behavioral performance post-concussion.Concussion, near-infrared spectroscopy, dual-task paradigm, cognitive, motor, brain activation.


Assuntos
Concussão Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Análise e Desempenho de Tarefas , Adolescente , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Cognição , Feminino , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem
20.
Front Hum Neurosci ; 14: 593883, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343318

RESUMO

Thousands of youth suffering from acquired brain injury or other early-life neurological disease live, mature, and learn with only limited communication and interaction with their world. Such cognitively capable children are ideal candidates for brain-computer interfaces (BCI). While BCI systems are rapidly evolving, a fundamental gap exists between technological innovators and the patients and families who stand to benefit. Forays into translating BCI systems to children in recent years have revealed that kids can learn to operate simple BCI with proficiency akin to adults. BCI could bring significant boons to the lives of many children with severe physical impairment, supporting their complex physical and social needs. However, children have been neglected in BCI research and a collaborative BCI research community is required to unite and push pediatric BCI development forward. To this end, the pediatric BCI Canada collaborative network (BCI-CAN) was formed, under a unified goal to cooperatively drive forward pediatric BCI innovation and impact. This article reflects on the topics and discussions raised in the foundational BCI-CAN meeting held in Toronto, ON, Canada in November 2019 and suggests the next steps required to see BCI impact the lives of children with severe neurological disease and their families.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...