Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 20(2): 438-449, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33277441

RESUMO

A major barrier to the successful application of nanotechnology for cancer treatment is the suboptimal delivery of therapeutic payloads to metastatic tumor deposits. We previously discovered that cabozantinib, a tyrosine kinase inhibitor, triggers neutrophil-mediated anticancer innate immunity, resulting in tumor regression in an aggressive PTEN/p53-deficient genetically engineered murine model of advanced prostate cancer. Here, we specifically investigated the potential of cabozantinib-induced neutrophil activation and recruitment to enhance delivery of BSA-coated polymeric nanoparticles (BSA-NPs) into murine PTEN/p53-deficient prostate tumors. On the basis of the observation that BSA coating of NPs enhanced association and internalization by activated neutrophils by approximately 6-fold in vitro, relative to uncoated NPs, we systemically injected BSA-coated, dye-loaded NPs into prostate-specific PTEN/p53-deficient mice that were pretreated with cabozantinib. Flow cytometric analysis revealed an approximately 4-fold increase of neutrophil-associated BSA-NPs and an approximately 32-fold increase in mean fluorescent dye uptake following 3 days of cabozantinib/BSA-NP administration, relative to BSA-NP alone. Strikingly, neutrophil depletion with Ly6G antibody abolished dye-loaded BSA-NP accumulation within tumors to baseline levels, demonstrating targeted neutrophil-mediated intratumoral NP delivery. Furthermore, we observed an approximately 13-fold decrease in accumulation of BSA-NPs in the liver, relative to uncoated NPs, post-cabozantinib treatment, suggesting that BSA coating of NPs can significantly enhance cabozantinib-induced, neutrophil-mediated targeted intratumoral drug delivery, while mitigating off-target toxicity. Collectively, we demonstrate a novel targeted nano-immunotherapeutic strategy for enhanced intratumoral delivery of BSA-NPs, with translational potential to significantly augment therapeutic indices of cancer medicines, thereby overcoming current pharmacologic barriers commonly encountered in preclinical/early-phase drug development.


Assuntos
Anilidas/uso terapêutico , Nanopartículas/metabolismo , Neutrófilos/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Piridinas/uso terapêutico , Receptores Proteína Tirosina Quinases/uso terapêutico , Anilidas/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Piridinas/farmacologia , Receptores Proteína Tirosina Quinases/farmacologia
2.
Eur J Pharmacol ; 818: 141-147, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29074411

RESUMO

An overactivation of Gαq dependent signaling pathway is crucial for development of metabolic and vascular abnormalities in diabetes. Therefore, our objective was to study effects of Gαq-RGS2 loop activator (1-(5-chloro-2-hydroxyphenyl)-3-(4-(trifluoromethyl)phenyl)-1H-1,2,4-triazol-5(4H)-one) on STZ induced diabetic complications in rats. Animals were divided into four groups; normal rats, diabetic rats (Streptozotocin, STZ, 60mg/kg, i.p.), Gαq-RGS2 loop activator (1mg/kg/d, i.p., 15 d, at 6 wk after citrate buffer or STZ administration, respectively) treated normal rats and diabetic rats. At the end of 8 wk, the metabolic parameters, hemodynamic parameters, in-vivo vascular reactivity and aortic anti-oxidant status were evaluated. A treatment of Gαq-RGS2 loop activator significantly decreased serum cholesterol (P < 0.001), triglyceride (P < 0.01), systolic/diastolic/mean arterial blood pressure (P < 0.001), lactate dehydrogenase (P < 0.001), cardiac selective creatinine kinase (P < 0.001), urea (P < 0.05), creatinine (P < 0.001), aortic superoxide dismutase (P < 0.05) and catalase(P < 0.05) in diabetic rats whereas increased basal (P < 0.05) and stimulated (acetylcholine (P < 0.01) and nitroglycerine (P < 0.05)) serum nitric oxide level without affecting elevated serum glucose level. The nitroglycerin stimulated NO production was significantly (P < 0.01) increased by Gαq-RGS2 loop activator administration in normal rats, too. Collectively, Gαq-RGS2 loop activator protects rats against streptozotocin induce hemodynamic and metabolic modulation without affecting elevated serum glucose level.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/metabolismo , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/fisiopatologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/fisiopatologia , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Masculino , Ratos , Ratos Wistar , Triazóis/farmacologia , Triazóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...