Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 27(1): 45-57, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35243596

RESUMO

In India, during the second wave of the COVID-19 pandemic, the breakthrough infections were mainly caused by the SARS-COV-2 delta variant (B.1.617.2). It was reported that, among majority of the infections due to the delta variant, only 9.8% percent cases required hospitalization, whereas only 0.4% fatality was observed. Sudden dropdown in COVID-19 infections cases were observed within a short timeframe, suggesting better host adaptation with evolved delta variant. Downregulation of host immune response against SARS-CoV-2 by ORF8 induced MHC-I degradation has been reported earlier. The Delta variant carried mutations (deletion) at Asp119 and Phe120 amino acids which are critical for ORF8 dimerization. The deletions of amino acids Asp119 and Phe120 in ORF8 of delta variant resulted in structural instability of ORF8 dimer caused by disruption of hydrogen bonds and salt bridges as revealed by structural analysis and MD simulation studies. Further, flexible docking of wild type and mutant ORF8 dimer revealed reduced interaction of mutant ORF8 dimer with MHC-I as compared to wild-type ORF8 dimer with MHC-1, thus implicating its possible role in MHC-I expression and host immune response against SARS-CoV-2. We thus propose that mutant ORF8 of SARS-CoV-2 delta variant may not be hindering the MHC-I expression thereby resulting in a better immune response against the SARS-CoV-2 delta variant, which partly explains the possible reason for sudden drop of SARS-CoV-2 infection rate in the second wave of SARS-CoV-2 predominated by delta variant in India.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imunidade Adaptativa , Aminoácidos , Dimerização , Pandemias , Polímeros
2.
Comput Struct Biotechnol J ; 20: 4501-4516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965661

RESUMO

Emerging SARS-CoV-2 variants with higher transmissibility and immune escape remain a persistent threat across the globe. This is evident from the recent outbreaks of the Delta (B.1.617.2) and Omicron variants. These variants have originated from different continents and spread across the globe. In this study, we explored the genomic and structural basis of these variants for their lineage defining mutations of the spike protein through computational analysis, protein modeling, and molecular dynamic (MD) simulations. We further experimentally validated the importance of these deletion mutants for their immune escape using a pseudovirus-based neutralization assay, and an antibody (4A8) that binds directly to the spike protein's NTD. Delta variant with the deletion and mutations in the NTD revealed a better rigidity and reduced flexibility as compared to the wild-type spike protein (Wuhan isolate). Furthermore, computational studies of 4A8 monoclonal antibody (mAb) revealed a reduced binding of Delta variant compared to the wild-type strain. Similarly, the MD simulation data and virus neutralization assays revealed that the Omicron also exhibits immune escape, as antigenic beta-sheets appear to be disrupted. The results of the present study demonstrate the higher possibility of immune escape and thereby achieved better fitness advantages by the Delta and Omicron variants, which warrants further demonstrations through experimental evidences. Our study, based on in-silico computational modelling, simulations, and pseudovirus-based neutralization assay, highlighted and identified the probable mechanism through which the Delta and Omicron variants are more pathogenically evolved with higher transmissibility as compared to the wild-type strain.

3.
Microorganisms ; 10(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336210

RESUMO

Streptokinase is an enzyme that can break down the blood clots in some cases of myocardial infarction (heart attack), pulmonary embolism, and arterial thromboembolism. Demand for streptokinase is higher globally than production due to increased incidences of various heart conditions. The main source of streptokinase is various strains of Streptococci. Expression of streptokinase in native strain Streptococcus equisimilis is limited due to the SagD gene-mediated post-translational modification of streptolysin, an inhibitor of streptokinase expression through the degradation of FasX small RNA (through CoV/RS), which stabilizes streptokinase mRNA. In order to improve the stability of mRNA and increase the expression of streptokinase, which is inhibited by SagA, we used CRISPR-Cas9 to successfully knockout the SagD gene and observed a 13.58-fold increased expression of streptokinase at the transcript level and 1.48-fold higher expression at the protein level in the mutant strain compared to wild type. We have demonstrated the successful gene knockout of SagD using CRISPR-Cas9 in S. equisimilis, where an engineered strain can be further used for overexpression of streptokinase for therapeutic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...