Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Synth Biol (Oxf) ; 6(1): ysab032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778568

RESUMO

With increasing complexity of expression studies and the repertoire of characterized sequences, combinatorial cloning has become a common necessity. Techniques like BioBricks and Golden Gate aim to standardize and speed up the process of cloning large constructs while enabling sharing of resources. The BioBricks format provides a simplified and flexible approach to endless assembly with a compact library and useful intermediates but is a slow process, joining only two parts in a cycle. Golden Gate improves upon the speed with use of Type IIS enzymes and joins several parts in a cycle but requires a larger library of parts and logistical inefficiencies scale up significantly in the multigene format. We present here a method that provides improvement over these techniques by combining their features. By using Type IIS enzymes in a format like BioBricks, we have enabled a faster and efficient assembly with reduced scarring, which performs at a similarly fast pace as Golden Gate, but significantly reduces library size and user input. Additionally, this method enables faster assembly of operon-style constructs, a feature requiring extensive workaround in Golden Gate. Our format allows such inclusions resulting in faster and more efficient assembly.

2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34380739

RESUMO

The enzyme carbonic anhydrase (CA), which catalyzes the interconversion of bicarbonate with carbon dioxide (CO2) and water, has been hypothesized to play a role in C3 photosynthesis. We identified two tobacco stromal CAs, ß-CA1 and ß-CA5, and produced CRISPR/Cas9 mutants affecting their encoding genes. While single knockout lines Δß-ca1 and Δß-ca5 had no striking phenotypic differences compared to wild type (WT) plants, Δß-ca1ca5 leaves developed abnormally and exhibited large necrotic lesions even when supplied with sucrose. Leaf development of Δß-ca1ca5 plants normalized at 9,000 ppm CO2 Leaves of Δß-ca1ca5 mutants and WT that had matured in high CO2 had identical CO2 fixation rates and photosystem II efficiency. Fatty acids, which are formed through reactions with bicarbonate substrates, exhibited abnormal profiles in the chloroplast CA-less mutant. Emerging Δß-ca1ca5 leaves produce reactive oxygen species in chloroplasts, perhaps due to lower nonphotochemical quenching efficiency compared to WT. Δß-ca1ca5 seedling germination and development is negatively affected at ambient CO2 Transgenes expressing full-length ß-CA1 and ß-CA5 proteins complemented the Δß-ca1ca5 mutation but inactivated (ΔZn-ßCA1) and cytoplasm-localized (Δ62-ßCA1) forms of ß-CA1 did not reverse the growth phenotype. Nevertheless, expression of the inactivated ΔZn-ßCA1 protein was able to restore the hypersensitive response to tobacco mosaic virus, while Δß-ca1 and Δß-ca1ca5 plants failed to show a hypersensitive response. We conclude that stromal CA plays a role in plant development, likely through providing bicarbonate for biosynthetic reactions, but stromal CA is not needed for maximal rates of photosynthesis in the C3 plant tobacco.


Assuntos
Anidrases Carbônicas/metabolismo , Cloroplastos/enzimologia , Nicotiana/enzimologia , Sistemas CRISPR-Cas , Cloroplastos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética
3.
Nat Plants ; 6(10): 1289-1299, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32929197

RESUMO

Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) catalyses the first step in carbon fixation and is a strategic target for improving photosynthetic efficiency. In plants, Rubisco is composed of eight large and eight small subunits, and its biogenesis requires multiple chaperones. Here, we optimized a system to produce tobacco Rubisco in Escherichia coli by coexpressing chaperones in autoinduction medium. We successfully assembled tobacco Rubisco in E. coli with each small subunit that is normally encoded by the nuclear genome. Even though each enzyme carries only a single type of small subunit in E. coli, the enzymes exhibit carboxylation kinetics that are very similar to the carboxylation kinetics of the native Rubisco. Tobacco Rubisco assembled with a recently discovered trichome small subunit has a higher catalytic rate and a lower CO2 affinity compared with Rubisco complexes that are assembled with other small subunits. Our E. coli expression system will enable the analysis of features of both subunits of Rubisco that affect its kinetic properties.


Assuntos
Nicotiana/enzimologia , Subunidades Proteicas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Clonagem Molecular/métodos , Escherichia coli/genética , Vetores Genéticos , Cinética , Chaperonas Moleculares/genética , Regiões Promotoras Genéticas , Subunidades Proteicas/genética , Ribulose-Bifosfato Carboxilase/química , Nicotiana/genética
4.
Plant Physiol Biochem ; 88: 60-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25660990

RESUMO

Plant cells are known to differentiate their responses to stress depending up on the light conditions. We observed that UVC sensitive phenotype of light grown asynchronous Chlamydomonas reinhardtii culture (Light culture: LC) can be converted to relatively resistant form by transfer to dark condition (Dark culture: DC) before UVC exposure. The absence of photosystem II (PSII) function, by either atrazine treatment in wild type or in D1 (psbA) null mutant, conferred UV protection even in LC. We provide an indirect support for involvement of reactive oxygen species (ROS) signalling by showing higher UV survival on exposures to mild dose of H2O2 or Methyl Viologen. Circadian trained culture also showed a rhythmic variation in UV sensitivity in response to alternating light-dark (12 h:12 h) entrainment, with maximum UV survival at the end of 12 h dark and minimum at the end of 12 h light. This rhythm failed to maintain in "free running" conditions, making it a non-circadian phenotype. Moreover, atrazine strongly inhibited rhythmic UV sensitivity and conferred a constitutively high resistance, without affecting internal circadian rhythm marker expression. Dampening of UV sensitivity rhythm in Thymine-dimer excision repair mutant (cc-888) suggested the involvement of DNA repair in this phenomenon. DNA excision repair (ER) assays in cell-free extracts revealed that dark incubated cells exhibit higher ER compared to those growing in light, underscoring the role of ER in conferring differential UV sensitivity in dark versus light incubation. We suggest that multiple factors such as ROS changes triggered by differences in PSII activity, concomitant with differential ER efficiency collectively contribute to light-dark (12 h: 12 h) rhythmicity in C. reinhardtii UV sensitivity.


Assuntos
Adaptação Fisiológica , Chlamydomonas reinhardtii/fisiologia , Ritmo Circadiano , Reparo do DNA , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Raios Ultravioleta , Atrazina , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/metabolismo , Reparo do DNA/genética , Escuridão , Mutação , Fenótipo , Fotoperíodo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dímeros de Pirimidina/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
5.
PLoS One ; 9(10): e109160, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25299516

RESUMO

Chlamydomonas reinhardtii is a prospective model system for understanding molecular mechanisms associated with DNA repair in plants and algae. To explore this possibility, we have developed an in vitro repair system from C. reinhardtii cell-free extracts that can efficiently repair UVC damage (Thymine-dimers) in the DNA. We observed that excision repair (ER) synthesis based nucleotide incorporation, specifically in UVC damaged supercoiled (SC) DNA, was followed by ligation of nicks. Photoreactivation efficiently competed out the ER in the presence of light. In addition, repair efficiency in cell-free extracts from ER deficient strains was several fold lower than that of wild-type cell extract. Interestingly, the inhibitor profile of repair DNA polymerase involved in C. reinhardtii in vitro ER system was akin to animal rather than plant DNA polymerase. The methodology to prepare repair competent cell-free extracts described in the current study can aid further molecular characterization of ER pathway in C. reinhardtii.


Assuntos
Sistema Livre de Células/fisiologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiologia , Reparo do DNA/genética , DNA de Plantas/genética , Células Cultivadas , Dano ao DNA/genética , Dímeros de Pirimidina/genética , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...