Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(1): 50-55, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38063056

RESUMO

Transition metal-Schiff base complexes are found to be important for biomedical applications but have demerits of being homogeneous complexes, thus their synthesis on the surface of graphene oxide nanoribbons (GONRs), materials of specific interest, can be beneficial for preparing advanced graphene-based materials for biomedical applications. Of foremost importance is their safety and biocompatibility with biological systems. In this study, a transition metal-Schiff base complex has been synthesized on the surface of a GONR (Ni-S-GNR) using 3-aminopropyltriethoxysilane and pyridine-2-carbaldehyde and complexing nickel. This Ni-S-GNR was characterized well by various physicochemical techniques. The evaluation of biocompatibility of Ni-S-GNR with hemoglobin confirmed binding interactions and influence on the native structure of hemoglobin. It was found that there was alteration in the secondary and tertiary structures of hemoglobin. In addition, histopathological studies on the liver and kidney cells of rats revealed non-toxicity of Ni-S-GNR towards these cells. Overall, Ni-S-GNR was found to be compatible with protein as the native structure was not destroyed and was non-toxic to cells.


Assuntos
Complexos de Coordenação , Grafite , Nanotubos de Carbono , Animais , Ratos , Grafite/química , Nanotubos de Carbono/química , Bases de Schiff/química , Hemoglobinas
2.
ACS Omega ; 7(24): 20983-20993, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35755359

RESUMO

Bioinspired delta-bismuth oxide nanoparticles (δ-Bi2O3 NPs) have been synthesized using a greener reducing agent and surfactant via co-precipitation method. The originality of this work is the use of Crinum viviparum flower extract for the first time for the fabrication of NPs, which were further calcined at 800 °C to obtain δ-Bi2O3 NPs. Physicochemical studies such as FTIR spectroscopy and XPS confirmed the formation of Bi2O3 NPs, whereas XRD and Raman verified the formation of the cubic delta (δ) phase of Bi2O3 NPs. However, HRTEM revealed the spherical shape with diameter 10-20 nm, while BET studies expose mesoporous nature with a surface area of 71 m2/gm. The band gap for δ-Bi2O3 NPs was estimated to be 3.45 eV, which ensured δ-Bi2O3 to be a promising photocatalyst under visible-light irradiation. Therefore, based on the results of physicochemical studies, the bioinspired δ-Bi2O3 NPs were explored as active photocatalysts for the degradation of toxic dyes, viz., Thymol blue (TB) and Congo red (CR) under visible-light irradiation. The study showed 98.26% degradation of TB in 40 min and 69.67% degradation of CR in 80 min by δ-Bi2O3 NPs. The photogenerated holes and electrons were found responsible for this enhancement. Furthermore, molecular docking investigations were also performed for δ-Bi2O3 NPs to understand its biological function as New Delhi metallo-ß-lactamase 1 (NDM-1) [PDB ID 5XP9] enzyme inhibitor, and studies revealed good interaction with various amino acid residues and found good hydrogen bonding with a fine pose energy of -3.851 kcal/mole.

3.
ACS Omega ; 7(8): 6869-6884, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252680

RESUMO

The present work demonstrated a novel Cleome simplicifolia-mediated green fabrication of nickel oxide nanoparticles (NiO NPs) to explore in vitro toxicity in Bm-17 and Labeo rohita liver cells. As-fabricated bioinspired NiO NPs were characterized by several analytical techniques. X-ray diffraction (XRD) revealed a crystalline face-centered-cubic structure. Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible diffuse reflectance spectroscopy (UV-DRS), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirmed NiO formation. The chemical composition was confirmed by energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy. Brunauer-Emmett-Teller (BET) revealed the mesoporous nature. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the formation of 97 nm diameter nanospheres formed due to the congregation of 10 nm size particles. Atomic force microscopy (AFM) revealed the nearly isotropic behavior of NiO NPs. Further, a molecular docking study was performed to explore their toxicity by binding with genetic molecules, and it was found that the docking energy was about -9.65284 kcal/mol. On evaluating the in vitro toxicity of NiO NPs for Bm-17 cells, the study showed that when cells were treated with a high concentration of NPs, cells were affected severely by toxicity, while at a lower concentration, cells were affected slightly. Further, on using 50 µg/mL, quick deaths of cells were observed due to the formation of more vacuoles in the cells. The DNA degradation study revealed that NiO NPs are significantly responsible for DNA degradation. For further confirmation, trypan blue assay was observed for cell viability, and morphological assessment was performed using inverted tissue culture microscopy. Further, the cytotoxicity of NiO NPs in L. rohita liver cells was studied. No toxicity was observed at 1 mg/L of NiO NPs; however, when the concentration was 30 and 90 mg/L, dark and shrank hepatic parenchyma was observed. Hence, the main cause of cell lysis is the increased vacuolization in the cells. Thus, the present study suggests that the cytotoxicity induced by NiO NPs could be used in anticancer drugs.

4.
ACS Omega ; 6(31): 20433-20444, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395991

RESUMO

This study depicts the facile approach for the synthesis of chitosan/graphene oxide bionanocomposite (Chi/GO) beads via the gelation process. This is the first-ever study in which these Chi/GO beads have been utilized as a drug carrier for the oral drug delivery of metronidazole (MTD) drug, and investigations were made regarding the release pattern of the MTD drug using these Chi/GO beads as a drug carrier for a prolonged period of 84 h. The MTD is loaded on the surface as well as the cavity of the Chi/GO beads to result in MTD-Chi/GO bionanocomposite beads. The MTD drug loading was found to be 683 mg/g. Furthermore, the in vitro release patterns of pure drug and the drug encapsulated with Chi/GO beads are explored in simulated gastric as well as simulated intestinal fluids with phosphate-buffered saline (PBS) of pH 1.2 and 7.4, respectively. As-synthesized bionanocomposite beads have shown excellent stability and capacity for extended release of the MTD drug as compared to the pure drug in terms of bioavailability in both media. The cumulative release data are fitted with the Korsmeyer-Peppas kinetics and first-order reaction kinetics at pH 1.2 and 7.4. The synthesized bionanocomposite beads have good potential to minimize the multiple-dose frequency with the sustained drug release property and can reduce the side effects due to the drug.

5.
Acta Crystallogr C Struct Chem ; 77(Pt 5): 240-248, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949340

RESUMO

The syntheses of four new cadmium and zinc complexes with 1,1'-bis(phosphanyl)ferrocene ligands and their phosphine chalcogenide derivatives are reported. The complexes were characterized by elemental analyses and IR, 1H NMR, 31P NMR and electronic absorption spectroscopy. The crystal structures of dichlorido[1-diphenylphosphinoyl-1'-(di-tert-butylphosphanyl)ferrocene-κ2O,P]cadmium(II), [CdCl2{(C17H14OP)(C13H22P)Fe}] or CdCl2(κ2P,O-dppOdtbpf) (1), bis[µ-(tert-butyl)(1'-diphenylphosphinoylferrocen-1-yl)phosphinato-κ3O,O':O'']bis[chloridozinc(II)], [Zn2{(C9H13O2P)(C17H14OP)Fe}2Cl2] or [ZnOCl{κ2O,O'-Ph2POFcPO2(t-Bu)}]2 (2), 1,1'-bis(di-tert-butylthiophosphinoyl)ferrocene, [Fe(C13H22PS)2] or dtbpfS2 (3), and [1,1'-bis(dicyclohexylphosphanyl)ferrocene-κ2P,P'][chlorido/cyanido(0.25/1.75)]zinc(II), [Zn(CN)1.75Cl0.25{(C17H26P)2Fe}] or Zn(CN)2(κ2-dcpf) (4), were determined crystallographically. Compound 1 has tetrahedral geometry in which the CdII centre is coordinated by one dppOdtbpf ligand in a κ2-manner and by two Cl atoms, while compound 2 displays a centrosymmetric dimeric unit in which two oxide atoms bridge the two Zn atoms to generate an eight-membered ring. Compound 3 revealed a sandwich structure with both phosphane groups sulfurized. In compound 4, the ZnII atom adopts a tetrahedral geometry by coordinating to the 1,1'-bis(dicyclohexylphosphanyl)ferrocene ligand in a κ2-manner and to two cyanide ligands.

6.
Adv Colloid Interface Sci ; 289: 102367, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33545443

RESUMO

Due to the essential role of biological macromolecules in our daily life; it is important to control the stability and activity of such macromolecules. Therefore, the most promising route for enhancement in stability and activity is immobilizing proteins on different support materials. Furthermore, large surface area and surface functional groups are the important features that are required for a better support system. These features of graphene oxide (GO) and reduced graphene oxide (RGO) makes them ideal support materials for protein immobilization. Studies show the successful formation of GO/RGO-protein complexes with enhancement in structural/thermal stability due to various interactions at the nano-bio interface and their utilization in various functional applications. The present review focuses on protein immobilization using GO/RGO as solid support materials. Moreover, we also emphasized on basic underlying mechanism and interactions (hydrophilic, hydrophobic, electrostatic, local protein-protein, hydrogen bonding and van der Walls) between protein and GO/RGO which influences structural stability and activity of enzymes/proteins. Furthermore, GO/RGO-protein complexes are utilized in various applications such as biosensors, bioimaging and theranostic agent, targeted drug delivery agents, and nanovectors for drug and protein delivery.


Assuntos
Grafite , Óxidos , Interações Hidrofóbicas e Hidrofílicas , Proteínas
7.
ACS Appl Bio Mater ; 4(8): 6112-6124, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006873

RESUMO

Graphene oxide nanoribbons with superior physicochemical properties acquired from graphene and carbon nanotubes have been used in various applications including biomedical applications. For biomedical applications, it is of utmost importance to understand how these graphene oxide nanoribbons interact with proteins and the influence they have on protein conformation and function. In this regard, an attempt has been made to evaluate the utility of graphene oxide nanoribbons as a compatible biomaterial for lysozyme (Lys) protein. In this study, graphene oxide nanoribbons (GONRs) synthesized from multiwalled carbon nanotubes (MWCNTs) were first functionalized with (3-aminopropyl)triethoxysilane (APTES) and further modified with vanillin (Val) to obtain Val-APTES-GONRs. On characterization, it was found that the Val-APTES-GONRs material had a ribbonlike morphology with abundant functionalities for interaction with protein. On evaluation of Val-APTES-GONRs as a compatible biomaterial for Lys, studies revealed that a lower concentration of the as-synthesized material has less influence on the conformation and the structure of Lys with better activity, whereas higher concentrations of the as-synthesized material had a greater influence on conformation and the structure of Lys with decreased activity. Overall, the thermal stability of Lys was maintained after introducing the Val-APTES-GONRs material. In addition, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) and Raman spectroscopies were performed for Lys composites with Val-APTES-GONRs for further understanding biomolecular interactions. This study is beneficial for designing advanced graphene-based materials for numerous bioinspired applications and better biomaterials for biotechnological use.


Assuntos
Grafite , Nanotubos de Carbono , Materiais Biocompatíveis , Grafite/química , Muramidase , Nanotubos de Carbono/química
8.
J Mater Chem B ; 8(35): 7956-7965, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32756674

RESUMO

Hexestrol is a non-steroidal estrogen which causes carcinogenic effects in animals. It is therefore important to develop sensitive and selective test methods for its early detection. Herein, we report the development of an electrochemical sensor to detect hexestrol in ultralow concentrations. In order to devise a simple and cost-effective hexestrol sensing electrode, attention is paid to the development of biomass-derived porous carbon (PCB) with large surface area and suitable porosity to immobilize ruthenium oxide nanoparticles (RuO2 NPs, 3-4 nm). The leftover Citrus limetta pulp is chosen as waste biomass since it has N and O based chemical species. Structural, morphological and compositional analysis of PCB and RuO2@PCB revealed well-dispersed RuO2 NPs over the PCB surface. High loading (5.27 at%) of Ru content is achieved due to the large surface area of PCB. Cyclic voltammetry, chronoamperometry and differential pulse voltammetry results suggest that the RuO2@PCB/ITO electrode is capable of detecting hexestrol concentration (in the range of 1 × 10-7-2 × 10-5 M). The practical application of hexestrol detection in milk samples demonstrates the recovery from 96.28 to 101%.


Assuntos
Carbono/química , Citrus/química , Eletroquímica/instrumentação , Hexestrol/análise , Nanopartículas/química , Compostos de Rutênio/química , Biomassa , Análise Custo-Benefício , Eletroquímica/economia , Eletrodos , Hexestrol/química , Porosidade , Propriedades de Superfície
9.
Dalton Trans ; 49(9): 2994-3000, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32083266

RESUMO

Carbon dioxide (CO2) is an important reactant and can be used for the syntheses of various types of industrially important chemicals. Hence, investigation concerning the conversion of CO2 into valuable energy-rich chemicals is an important and current topic in molecular catalysis. Recent research on molecular catalysts has led to improved rates for conversion of CO2 to energy-rich products such as formate, but the catalysts based on first-row transition metals are underdeveloped. Copper(i) complexes containing the 1,1'-bis(di-tert-butylphosphino) ferrocene ligand were found to promote the catalytic hydrogenation of CO2 to formate in the presence of DBU as the base, where the catalytic conversion of CO2via hydrogenation is achieved using in situ gaseous H2 (granulated tin metal and concentrated HCl) to produce valuable energy-rich chemicals, and therefore it is a promising, safe and simple strategy to conduct reactions under ambient pressure at room temperature. Towards this goal, we report an efficient copper(i) complex based catalyst [CuI(dtbpf)] to achieve ambient-pressure CO2 hydrogenation catalysis for generating the formate salt (HCO2-) with turnover number (TON) values of 326 to 1.065 × 105 in 12 to 48 h of reaction at 25 °C to 80 °C. The outstanding catalytic performance of [CuI(dtbpf)] makes it a potential candidate for realizing the large-scale production of formate by CO2 hydrogenation.

10.
ACS Biomater Sci Eng ; 6(9): 4881-4892, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455285

RESUMO

Functional carbon material synthesis from waste biomass by a sustainable method is of prime importance and has wide variety of applications. Herein, functional carbon materials with structural variability are synthesized using a well-known solvothermal method. The leftover pulp waste biomass (PB) of citrus limetta is converted to functional carbon by treatment with a mixture of choline bitartrate (ChBt) and FeCl3 (1:2 mol ratio) as a solvent. The biomass to solvent ratio is varied as 1:1, 0.8:1, and 0.4:1 during solvothermal treatment to obtain PB-1, PB-2, and PB-3 as functional carbon materials, respectively. On characterization, PB carbon materials were found to be rich in oxygen-containing functional groups possessing different morphologies. Furthermore, results suggested the role of solvent as a soft template and catalyst during the synthesis of carbon materials. The feasibility of synthesized carbon materials as a biocompatible cosolvent for lysozyme was evaluated. In the case of PB-2 material (synthesized using 0.8:1 biomass to solvent ratio), results show an enhancement of lysozyme activity by 150%. Besides, spectroscopic and calorimetric data confirm the preservation of thermal and structural stability of lysozyme in the PB-2 solution. Thus, this study stipulates PB-2 as an excellent cosolvent for protein studies. With this work, we aim to delve into an entirely new arena of applications of biomass in the field of biotechnology.


Assuntos
Carbono , Muramidase , Biomassa , Biotecnologia
11.
Nanoscale Adv ; 2(5): 2146-2159, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36132509

RESUMO

In the present work, nitrogen-doped reduced graphene oxide (NrGO) was synthesized via a hydrothermal treatment of graphene oxide (GO) in the presence of urea. Gold nanoparticles (Au(0) NPs) were immobilized over the surface of NrGO (Au(0)-NrGO). Characterization of the Au(0)-NrGO nanocomposite via FT-IR spectroscopy, Raman spectroscopy, elemental mapping and XPS revealed the doping of N atoms during the reduction of GO. XRD and XPS studies confirmed the presence of Au(0) NPs and EDS analysis showed a 4.51 wt% loading of Au NPs in the Au(0)-NrGO nanocomposite. The morphology of Au(0)-NrGO was explored by SEM and TEM, which showed the presence of spherical Au metal NPs uniformly immobilized on the surface of NrGO. Further, studies on lysozyme (Lys) in the presence of Au(0)-NrGO by UV-visible, fluorescence, and circular dichroism spectroscopy revealed a conformational change in Lys and electrostatic interaction between Lys and Au(0)-NrGO. The DLS result showed an enhancement in the size of the Au(0)-NrGO and Lys conjugates. The Au(0)-NrGO-induced conformational changes in the structure of Lys resulted in a significant decrease in its activity at a certain concentration of Au(0)-NrGO. Moreover, the results showed that Lys favorably binds with the surface of Au(0)-NrGO, resulting in the formation of 2-D scaffolds possibly due to electrostatic and hydrophobic interactions, H-bonding, and interactions between the AuNPs and sulfur-containing amino acid residues of Lys. SEM exhibited the formation of conjugates in the form of 2-D scaffolds due to the biomolecular interactions between Lys and Au(0)-NrGO. The TEM studies revealed that Lys agglomerated around the Au(0) NPs immobilized on the surface of NrGO, which suggests the formation of a protein corona (PC) around the AuNPs. Furthermore, the favorable Au(0) NP-sulphur (PC) interaction was confirmed by the disappearance of the S-S stretching band in the Raman spectra. Overall, the results obtained provide insight into the nano-bio interface and formation of Au(0) NP-PC, which can be used for bioinspired applications, such as biosensing and imaging and the development of advanced functional Au NPs.

12.
ACS Omega ; 3(11): 16377-16385, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458273

RESUMO

Fur-imine-functionalized graphene oxide-immobilized copper oxide nanoparticles (Cu(II)-Fur-APTES/GO) are synthesized and found to be a cost-effective, efficient, and reusable heterogeneous nanocatalyst for the preparation of pharmaceutically important xanthene derivatives under greener solvent conditions. Cu(II)-Fur-APTES/GO exhibits excellent result in the synthesis of xanthenes with reduced reaction time (25-50 min) and higher yields (up to 95%) and has a simple procedure, ease of product separation, and no byproducts. Moreover, the nanocatalyst has a Cu loading of 13.5 at. % over functionalized GO which is far superior than the already known metal-based heterogeneous catalysts. The newly synthesized catalyst has been characterized by various physiochemical techniques such as X-ray photoelectron spectroscopy, X-ray diffraction, energy-dispersive X-ray, Raman spectroscopy for structural characterization, field emission scanning electron microscopy and high-resolution transmission electron microscopy for morphological characterization. The catalyst showed admirable recyclability up to five consecutive runs, and there was no appreciable loss in catalytic efficiency.

13.
Case Rep Pulmonol ; 2012: 758630, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23320238

RESUMO

We describe a 70-year-old male with a history of diabetes mellitus, hypertension, and asthma who presented with increasing breathlessness for 5 months. He was diagnosed to have allergic bronchopulmonary aspergillosis (ABPA) by serological and radiographic criteria. He was treated with steroids and itraconazole. After initial improvement, he developed fever with cough and mucopurulent sputum. X-ray chest revealed multiple cavities with air fluid level. Patient was treated with antibiotics without any response. Sputum was negative for acid fast bacilli (AFB). Sputum culture for bacteria and fungus did not reveal any significant growth; however a delayed growth of Nocardia was noted on fungal plates. Modified Ziehl Nelsen stain was positive for AFB. Patient was treated with cotrimoxazole. We discuss the serological and radiological criteria of ABPA, presentation and treatment of nocardia pulmonary infection and other possible causes of necrotizing pneumonia in immunocompromised settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...