Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pediatr Genet ; 13(1): 22-28, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567177

RESUMO

Inborn errors of ketogenesis are rare disorders that result in acute and fulminant decompensation during lipolytic stress, particularly in infants and children. These include mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (HMGCS) deficiency and HMG-CoA lyase (HMGCL) deficiency. In this series, we describe the clinical, biochemical, and molecular profiles of four patients along with dietary interventions and their outcomes on a long-term follow-up. Two patients each of HMGCS and HMGCL deficiency were evaluated with clinical history, biochemical investigations, including tandem mass spectrometry (TMS) and urine gas chromatography-mass spectrometry (GCMS). Molecular analysis was performed by whole-exome sequencing, as well as exon array validated by long-range polymerase chain reaction. All individuals were diagnosed with acute metabolic decompensation in the early infancy period except one with HMGCL deficiency who had the first presentation at 5 years of age. Central nervous system manifestations, severe metabolic acidosis, hyperammonemia, hypoglycemia with a normal lactate, and absence of urinary ketones were observed in all the affected individuals. The disorder was life-threatening in three individuals and one succumbed to the illness. TMS was nonspecific and urine GCMS revealed dicarboxylic aciduria in HMGCS deficiency. Both the patients with HMGCL deficiency demonstrated elevated 3 hydroxyisovaleryl carnitine levels in TMS and metabolites of leucine degradation in urine GCMS. We identified five novel variants that included a large deletion involving exon 2 in HMGCL gene. There was no evidence of long-term neurological sequelae in the living individuals. Diet with moderation of fat intake was followed in two individuals with HMGCS deficiency. Low leucine and protein diet with moderation of fat intake was followed in the individual with HMGCL deficiency. All affected individuals are thriving well with no further major metabolic decompensation.

2.
BMC Nurs ; 23(1): 5, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163892

RESUMO

BACKGROUND: Infection risk was significant for front-line nurses during the Covid-19 outbreak. The pandemic presented several ethical difficulties and sapped nurses' drive to labor harder for longer periods. This study evaluates registered nurses' perceptions of Covid-19 infection risk, ethical dilemmas, and motivating factors. MATERIALS AND METHODS: During March and April 2022, 400 registered nurses from a newly established tertiary care hospital participated in this cross-sectional exploratory survey. The risk assessment scale, motivation to work scale, and ethical dilemma scale were used to assess the perceived risk of infection, motivational factors and ethical challenges experienced by the nurses. Appropriate descriptive and inferential statistics were applied to compute the results. RESULTS: 76.4% of nurses feared working as a nurse put them at higher risk of infection. Besides the fear of contracting infection, nurses believed they were the source of infection to family members (70.8%) and people around (67.5%). 63.3% of nurses agree that they do not have the right to refuse treatment and every patient has the right to receive optimal care, regardless of age, gender, and medical conditions. Professional obligation to treat patients (72.3%) and sound professional knowledge and experience (83.5%) are important motivating factors to work during the pandemic. Multilinear regression analysis revealed that professional education (95% CI, 3.845 - 0.694, p = 0.005), Covid-19 positive status (95% CI,0.455-2.756, p = 0.006), and post-Covid-19 hospitalization (95% CI, 1.395-6.978, p = 0.003) and duration of hospitalization (95% CI, 0.754-0.058, p = 0.022) are independent predictors of higher perceived risk of infection among nurses. CONCLUSIONS: During the pandemic, nurses were afraid to work and faced personal and family risks of contracting the virus. Despite these challenges, they still feel a strong sense of commitment and dedication to providing the best possible care. Nurse administrators need to create a supportive environment that follows ethical principles and meets the needs of nurses to boost their motivation and encourage them to continue working for longer periods.

3.
Vet Res Commun ; 48(1): 179-190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37610508

RESUMO

Synbiotics have been used as biotherapeutic supplements for prevention of new-born calf gastrointestinal disorders. Present study was conducted to evaluate the impact of fructo-oligosaccharide, mannan-oligosaccharide and inulin along with Lactobacillus plantarum CRD-7 and Lactobacillus acidophilus NCDC15 on the nutrient digestibility, growth performance and faecal microbial population of pre-ruminant buffalo calves. Twenty-four Murrah calves (5 days old) were randomly assigned to four groups of six calves in each using randomized block design. Calves in Group I (control) received only a basic diet of milk, calf starter and berseem with no additives. Calves in Group II (SYN1) were fed 6 g fructo-oligosaccharide (FOS) + Lactobacillus plantarum CRD-7 (100 ml). Calves in Group III (SYN2) were fed 9 g inulin + L. plantarum CRD-7 (50 ml), while calves in Group IV (SYN3) received 4 g MOS + L. acidophilus NCDC15 (200 ml) as fermented milk having 108 CFU/ml/calf/day in addition to the basal diet. The results revealed that digestibility of dry matter, crude protein, ether extract and average daily gain were all higher (P < 0.05) in SYN1 as compared to control group. The antioxidant enzyme activity, humoral and cell mediated immunity performed well in SYN1, SYN2 and SYN3 as compared to control. Diarrhoea and faecal scouring were lower (P < 0.05) in all supplemented groups than control. Faecal Lactobacilli and Bifidobacterium counts were also higher in SYN1 group followed by SYN2 and SYN3. Faecal ammonia, lactate, pH, and volatile fatty acids level were increased in SYN1 supplemented groups. The synbiotic combination of 6 g FOS + L. plantarum CRD-7 had better response on digestibility, average daily gain, antioxidant enzymes, immune response, faecal microbiota and metabolites and also reduce the faecal score and diarrhoea incidence. Therefore, supplementation of 6 g FOS + L. plantarum CRD-7 can be advised for general use in order to promote long-term animal production.


Assuntos
Simbióticos , Animais , Búfalos , Inulina , Antioxidantes , Dieta/veterinária , Diarreia/prevenção & controle , Diarreia/veterinária , Oligossacarídeos/metabolismo , Ração Animal/análise , Peso Corporal
4.
Trop Anim Health Prod ; 55(5): 298, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37723324

RESUMO

Dairy sector has recently focused a lot of attention on the addition of agricultural by-products as functional feed additives as an environmentally friendly and sustainable technology. Depotash vinasse (DPV) serves as a cheap source of nutrients and a binder for animal feed in dairy sector. However, there is little information available on the usage of depotash vinasse on animals. Therefore, the aim of the present study was to assess the role of depotash vinasse as pellet binder on nutrient digestibility, blood parameters and milk production in early lactating Murrah buffaloes. Fifteen Murrah buffaloes (daily milk yield 8.5 to 9.0 kg/day) were randomly assigned to three groups, viz., control, group 1 (G1) and group 2 (G2) on the basis of milk yield and days in milk. The control group animals received a basal diet of concentrate mix, oat greens and wheat straw, G1 animals received molasses as a binder (8%), while G2 received DPV as binder (8%). Results revealed that there was no significant effect on nutrient digestibility. Blood parameters and hepatic enzymes were statistically similar (P > 0.05). Supplementation of depotash vinasse as binder had no effect on plasma minerals and was comparable to control group. There were no changes in milk production and 6% fat-corrected milk yield in treated groups as compared to control. It was concluded that depotash vinasse (8%) may be used for pellet production with no negative impact on milk yield and composition, nutrient digestibility and blood biochemical parameters in early lactating buffaloes.


Assuntos
Bison , Búfalos , Animais , Feminino , Melaço , Lactação , Agricultura
5.
Gene ; 887: 147786, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689220

RESUMO

The growing use of antibiotics in livestock is one of the main causes of the rapid global spread of antimicrobial resistance (AMR). However, extensive research on AMR in animals is currently absent. In this article, we provide the bacterial antibiotic resistance genes (ARGs) from piggery waste samples in West Bengal, India, based on whole genome sequencing (WGS). According to the study, there are alarmingly high levels of Enterobacteriaceae in piggery waste, especially slaughterhouse waste, that are resistant to beta-lactam, aminoglycoside, sulphonamide, and tetracycline. We found several plasmids carrying multidrug-resistant Enterobacteriaceae including resistant to last-resort medications like colistin and carbapenems. Our findings will serve as a guide for developing AMR management policies for livestock in India and aid in understanding the current AMR profiles of pigs. To grasp the actual situation with AMR in the pig sector, large scale sample screening must be done.


Assuntos
Antibacterianos , Tetraciclina , Animais , Suínos , Antibacterianos/farmacologia , Sulfanilamida , Carbapenêmicos , Gado , Sequenciamento Completo do Genoma
6.
Biometals ; 36(6): 1421-1439, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37563359

RESUMO

This study aimed to see the effect of oral supplementation of specific trace minerals mixture on the growth, immunity, and reproductive development of indigenous growing bull calves. Eighteen Sahiwal bull calves, with an average age of 6 months were chosen and divided into three groups. Group 1 was fed with a basal diet, Group 2 was provided with an additional specific trace mineral supplement to achieve a diet containing 70 ppm of Zn, 17.50 ppm of Cu, 65 ppm of Mn, and 1.75 ppm of Cr. Group 3 received a 25% extra supplement to achieve a diet containing 87.50 ppm of Zn, 21.87 ppm of Cu, 81.25 ppm of Mn, and 2.18 ppm of Cr. The experiment was carried out for a total of 180 days. According to the findings, there was no significant impact of specific trace minerals supplementation on the animals' body weight, morphometric parameters, dry matter intake, average daily gain, nutritional value, digestibility and nitrogen retention. However, higher levels of Zn, Cu, and Mn led to increased (p < 0.05) total retention, while Cr retention remained the same. Serum mineral concentrations of Zn, Cu, and Mn increased significantly (p < 0.05) in G2 and G3 compared to the G1 group while Ca, P, and Cr had no significant change. Blood plasma glucose, albumin, globulin, and total protein showed no significant differences. Plasma alkaline phosphatase activity improved significantly (p < 0.05) in G2 and G3 but alanine transaminase, aspartate aminotransferase, hemoglobin, hematocrit, and IGF-1 remained unchanged. Superoxide dismutase activity, ferric-reducing antioxidant power, and total immunoglobulin concentration increased significantly (p < 0.05) in G2 and G3 groups, however, catalase activity and IgG count did not change among the groups. Mineral-supplemented groups (G2 and G3) showed a significant change (p < 0.05) in testosterone production during the 120th and the 180th day of the trial. Scrotal circumference and temperature gradient of the scrotal surface did not show any significant change. Supplementing growing bull calves with specific trace minerals above the basal level (70, 17.50, 65 and 1.75 ppm of Zn, Cu, Mn and Cr) has no direct beneficial effect on the growth parameters but can have positive effects on their antioxidant status, immunity and reproductive development as the related blood parameters were positively affected.


Assuntos
Manganês , Oligoelementos , Bovinos , Animais , Masculino , Manganês/farmacologia , Manganês/metabolismo , Cobre/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Oligoelementos/metabolismo , Cromo/farmacologia , Antioxidantes/metabolismo , Suplementos Nutricionais , Minerais , Dieta/veterinária , Metaboloma
7.
Comp Immunol Microbiol Infect Dis ; 98: 102005, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37352625

RESUMO

Even though there is a link between antibiotic resistance and the presence of transposable elements few research has looked at the prevalence and distribution of transposable elements/ integrons in piggery farm samples. Present study identified the presence of six transposable elements namely Tn6763 (Accession number: OQ565300), Tn6764, (Accession number: OQ565299), Tn6765 (Accession number: OQ409902), Tn2003 (Accession number: OQ503494), Tn6072 (Accession number: OQ565298) and Tn6020 (Accession number: OQ503493) in piggery farm waste from India which are belongs to Enterobacteriaceae family. In a conjugative experiment, Klebsiella isolates carrying Tn6020 having the resistant phenotypes for nalidixic acid was used as donor cells while Escherichia coli DH5α Cells carrying chloramphenicol resistant plasmid was employed as recipient cells. Transconjugant bacterial colonies were shown to carry the Tn6020 transposable elements with both nalidixic acid (donor cell origin) and chloramphenicol (recipient cell origin) resistant antibiotic phenotypes. Given the presence of transposable elements in 21.4% of resistant Enterobacteriaceae strains, preventative measures are vital for avoiding the spread of mobile genetic resistance determinants in the piggery sector and to monitor their emergence.


Assuntos
Antibacterianos , Elementos de DNA Transponíveis , Animais , Antibacterianos/farmacologia , Cloranfenicol , Conjugação Genética , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Enterobacteriaceae/genética , Escherichia coli/genética , Fazendas , Integrons/genética , Testes de Sensibilidade Microbiana/veterinária , Ácido Nalidíxico , Fenótipo , Plasmídeos/genética , Suínos
8.
Sci Rep ; 13(1): 10184, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349514

RESUMO

Synbiotics are employed as feed additives in animal production as an alternate to antibiotics for sustaining the gut microbiota and providing protection against infections. Dairy calves require a healthy diet and management to ensure a better future for the herd of dairy animals. Therefore, the present study was carried out to investigate the effect of synbiotics formulation on growth performance, nutrient digestibility, fecal bacterial count, metabolites, immunoglobulins, blood parameters, antioxidant enzymes and immune response of pre-ruminant Murrah buffalo calves. Twenty-four apparently healthy calves (5 days old) were allotted into four groups of six calves each. Group I (control) calves were fed a basal diet of milk, calf starter and berseem with no supplements. Group II (SYN1) calves were fed with 3 g fructooligosaccharide (FOS) + Lactobacillus plantarum CRD-7 (150 ml). Group III (SYN2) calves were fed with 6 g FOS + L. plantarum CRD-7 (100 ml), whereas calves in group IV (SYN3) received 9 g FOS + L. plantarum CRD-7 (50 ml). The results showed that SYN2 had the highest (P < 0.05) crude protein digestibility and average daily gain compared to the control. Fecal counts of Lactobacilli and Bifidobacterium were also increased (P < 0.05) in supplemented groups as compared to control. Fecal ammonia, diarrhea incidence and fecal scores were reduced in treated groups while lactate, volatile fatty acids and antioxidant enzymes were improved compared to the control. Synbiotic supplementation also improved both cell-mediated and humoral immune responses in buffalo calves. These findings indicated that synbiotics formulation of 6 g FOS + L. plantarum CRD-7 in dairy calves improved digestibility, antioxidant enzymes, and immune status, as well as modulated the fecal microbiota and decreased diarrhea incidence. Therefore, synbiotics formulation can be recommended for commercial use in order to achieve sustainable animal production.


Assuntos
Bison , Simbióticos , Animais , Búfalos , Antioxidantes , Suplementos Nutricionais , Dieta/veterinária , Diarreia/veterinária , Peso Corporal , Ração Animal/análise , Desmame
9.
J Food Sci Technol ; 60(1): 132-146, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618039

RESUMO

In order to ensure food safety, screening food samples for the presence of pathogens has been categorised as a legal testing item throughout the globe. One of the most prevalent zoonotic bacteria transmitted through dairy milk is Staphylococcus aureus. Given the limitations of the conventional detection methods, in the current study we desigined a competitive lateral flow immune assay (LFIA) using colloidal silver nanoparticles derived from mango leaves for the detection of Staphylococcus aureus in cow milk. SpA, a recombinant protein of Staphylococcus aureus, was used to raised hyperimmune sera used for developing the assay followed by conjugation with the synthesized nanoparticles. To increase the specificity of the assay, the milk samples were prenriched with selective agar exclusively require for Staphyloccocus aureus. The assay was found to be completed within 7-8 h by observing test and control lines in LFIA strips. The developed assay was found to specifically detect the bacteria as low as 1000 cfu/ml of milk samples. With a total 230 number of raw and clinical mastitis milk samples, the assay was validated and achieved relative accuracy, specificity, and sensitivity values of 97.39, 98.03, and 96.1%, respectively. The developed LFIA, which uses economically feasible and stable silver nanoparticles derived from mango leaves, has the potential for routine screening of milk samples for the presence of Staphylococcus aureus, especially in low-resource settings, allowing for early diagnosis, which facilitates effective treatment for the dairy animals and prevents the transmission of the disease in consumers.

10.
Anim Biotechnol ; 34(5): 1849-1854, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35357269

RESUMO

CTX-M beta-lactamases are one of the most important extended spectrum beta-lactamase (ESBL) resistance enzymes found in E. coli. In the present study, 59% of E. coli isolates from mastitis cow milk were reported to be positive for ESBL types. The prevalence of beta-lactam (ß-lactam) antibiotic resistance was reported to be 84%, 72.7%, 52.27%, 50%, and 45.4% for cefotaxime, cefepime, cefuroxime, oxacillin, and cephalexine, respectively. The blaCTX-M gene was found in 65% (n = 17) of the E. coli isolates when they were genotyped. Further, the use of a CRISPR/cas9 cassette to target the E. coli blaCTX-M gene revealed changes in antibiotic phenotypes for cefotaxime.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Mastite , Bovinos , Feminino , Animais , Antibacterianos/farmacologia , Cefotaxima/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/genética , Leite/metabolismo , Sistemas CRISPR-Cas/genética , Fenótipo , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamas , Mastite/genética , Doenças dos Bovinos/genética
11.
Front Microbiol ; 13: 933017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325026

RESUMO

Biotic stress is caused by harmful microbes that prevent plants from growing normally and also having numerous negative effects on agriculture crops globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects, and nematodes are the major constrains of stress that tends to increase the reactive oxygen species that affect the physiological and molecular functioning of plants and also led to the decrease in crop productivity. Bacterial and fungal endophytes are the solution to overcome the tasks faced with conventional farming, and these are environment friendly microbial commodities that colonize in plant tissues without causing any damage. Endophytes play an important role in host fitness, uptake of nutrients, synthesis of phytohormone and diminish the injury triggered by pathogens via antibiosis, production of lytic enzymes, secondary metabolites, and hormone activation. They are also reported to help plants in coping with biotic stress, improving crops and soil health, respectively. Therefore, usage of endophytes as biofertilizers and biocontrol agent have developed an eco-friendly substitute to destructive chemicals for plant development and also in mitigation of biotic stress. Thus, this review highlighted the potential role of endophytes as biofertilizers, biocontrol agent, and in mitigation of biotic stress for maintenance of plant development and soil health for sustainable agriculture.

12.
AMB Express ; 12(1): 141, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370250

RESUMO

Exploring innovative methods to provide essential nutrients and reducing ruminant greenhouse gas emission is crucial for animal production and diminishing global warming. This study was conducted to examine the efficacy of Moringa oleifera leaves (ML) in ruminants at 0%, 5%, 10%, 15%, 20%, 30% and 40% level in different roughage (R) and concentrate (C) (80R:20C, 70R:30C and 60R:40C) under in vitro conditions. Chemical composition of ML, concentrate mixture and berseem were estimated. Rumen fermentation parameters of male goat kids viz., total gas production, CH4, true dry matter digestibility (TDMD), organic matter digestibility (TOMD), partial fraction (PF), microbial biomass (MBP), ammonia (N), acetate, propionate, butyrate and acetate propionate ratio were observed under in vitro conditions. Results revealed that crude protein, organic matter and ethyl ether content were higher in ML as compared to concentrate mixture and berseem. Magnesium and iron content were also higher in ML as compared to concentrate and berseem. Total gas production, digestibility of DM and OM, MBP, acetate and propionate level were improved (P < 0.05) upto 10-20% replacement. In contrast, decreased in CH4 (%) and CH4 (mL/100 mg dDM) was noted with increased levels of ML incorporation. There was no change observed in ammonia, acetate: propionate ratios at all the three planes of nutrition. In this study, it is concluded that mixing Moringa oleifera leaves in feed can be used as protein supplement and reduce the methane emission without causing any effect on digestibility and rumen fermentation parameters. However, ML can be suggested for widespread practice to attain the sustainable animal production (10-20%) and to alleviate the global warming.

13.
Front Plant Sci ; 13: 930340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082294

RESUMO

With the increase in world population, the demography of humans is estimated to be exceeded and it has become a major challenge to provide an adequate amount of food, feed, and agricultural products majorly in developing countries. The use of chemical fertilizers causes the plant to grow efficiently and rapidly to meet the food demand. The drawbacks of using a higher quantity of chemical or synthetic fertilizers are environmental pollution, persistent changes in the soil ecology, physiochemical composition, decreasing agricultural productivity and cause several health hazards. Climatic factors are responsible for enhancing abiotic stress on crops, resulting in reduced agricultural productivity. There are various types of abiotic and biotic stress factors like soil salinity, drought, wind, improper temperature, heavy metals, waterlogging, and different weeds and phytopathogens like bacteria, viruses, fungi, and nematodes which attack plants, reducing crop productivity and quality. There is a shift toward the use of biofertilizers due to all these facts, which provide nutrition through natural processes like zinc, potassium and phosphorus solubilization, nitrogen fixation, production of hormones, siderophore, various hydrolytic enzymes and protect the plant from different plant pathogens and stress conditions. They provide the nutrition in adequate amount that is sufficient for healthy crop development to fulfill the demand of the increasing population worldwide, eco-friendly and economically convenient. This review will focus on biofertilizers and their mechanisms of action, role in crop productivity and in biotic/abiotic stress tolerance.

14.
Front Microbiol ; 13: 891870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958149

RESUMO

The indiscriminate use of organophosphate insecticide chlorpyrifos in agricultural crops causes significant soil and water pollution and poses a serious threat to the global community. In this study, a microbial consortium ERM C-1 containing bacterial strains Pseudomonas putida T7, Pseudomonas aeruginosa M2, Klebsiella pneumoniae M6, and a fungal strain Aspergillus terreus TF1 was developed for the effective degradation of chlorpyrifos. Results revealed that microbial strains were not only utilizing chlorpyrifos (500 mg L-1) but also coupled with plant growth-promoting characteristics and laccase production. PGP traits, that is, IAA (35.53, 45.53, 25.19, and 25.53 µg mL-1), HCN (19.85, 17.85, 12.18, and 9.85 µg mL-1), and ammonium (14.73, 16.73, 8.05, and 10.87 µg mL-1) production, and potassium (49.53, 66.72, 46.14, and 52.72 µg mL-1), phosphate (52.37, 63.89, 33.33, and 71.89 µg mL-1), and zinc (29.75, 49.75, 49.12, and 57.75 µg mL-1) solubilization tests were positive for microbial strains T7, M2, M6, and TF1, respectively. The laccase activity by ERM C-1 was estimated as 37.53, 57.16, and 87.57 enzyme U mL-1 after 5, 10, and 15 days of incubation, respectively. Chlorpyrifos degradation was associated with ERM C-1 and laccase activity, and the degree of enzyme activity was higher in the consortium than in individual strains. The biodegradation study with developed consortium ERM C-1 showed a decreased chlorpyrifos concentration from the 7th day of incubation (65.77% degradation) followed by complete disappearance (100% degradation) after the 30th day of incubation in the MS medium. First-order degradation kinetics with a linear model revealed a high k -day value and low t 1/2 value in ERM C-1. The results of HPLC and GC-MS analysis proved that consortium ERM C-1 was capable of completely removing chlorpyrifos by co-metabolism mechanism.

15.
Microbiol Res ; 261: 127053, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35623160

RESUMO

Secondary metabolites of microbial origin are structurally diverse and functionally versatile compounds that offer selective advantages to the producing organism. Production of these compounds is low under natural conditions and requires elicitation for large-scale production. Omic sciences provide a major breakthrough in the discovery of novel compounds and indicate efficiency of microorganisms to produce a diverse array of chemical entities more than those known today. Synthetic biology in particular, has remarkably changed the outlook to explore natural products by unravelling hidden potential of the microorganisms. In silico studies pave a path to investigate new secondary metabolic compounds by the fusion of genetics, chemistry, and computer science, which expand their diversity and lead to generation of new analogs. Genes involved in secondary metabolite biosynthesis, regulation and transport in microorganisms are organized into clusters known as Biosynthetic gene clusters (BGCs). Application of sophisticated tools helps to get more information on newer BGCs leading to novel bioactive compound discovery. Experimental verification and structural elucidation are still the bottleneck in the discovery of a new product, but in silico tools help to speed up the process of product prediction and its identification. They also help in optimizing strains for stable and optimal production during scale up process for an economic output. In the present study, we have described microbial secondary metabolites with special mention of polyketides (PKS) and non-ribosomal polypeptides (NRPS) along with some of the strategies employed to induce their production, providing the main emphasis on in silico methods and tools used in their study and analysis to date.


Assuntos
Produtos Biológicos , Policetídeos , Família Multigênica , Policetídeos/metabolismo , Metabolismo Secundário/genética
16.
J Hazard Mater ; 427: 128033, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999406

RESUMO

In recent years, the proportion of organic and inorganic contaminants has increased rapidly due to growing human interference and represents a threat to ecosystems. The removal of these toxic pollutants from the environment is a difficult task. Physical, chemical and biological methods are implemented for the degradation of toxic pollutants from the environment. Among existing technologies, bioremediation in combination with nanotechnology is the most promising and cost-effective method for the removal of pollutants. Numerous studies have shown that exceptional characteristics of nanomaterials such as improved catalysis and adsorption properties as well as high reactivity have been subjects of great interest. There is an emerging trend of employing bacterial, fungal and algal cultures and their components, extracts or biomolecules as catalysts for the sustainable production of nanomaterials. They can serve as facilitators in the bioremediation of toxic compounds by immobilizing or inducing the synthesis of remediating microbial enzymes. Understanding the association between microorganisms, contaminants and nanoparticles (NPs) is of crucial importance. In this review, we focus on the removal of toxic pollutants using the cumulative effects of nanoparticles with microbial technology and their applications in different domains. Besides, we discuss how this novel nanobioremediation technique is significant and contributes towards sustainability.


Assuntos
Poluentes Ambientais , Bactérias , Biodegradação Ambiental , Ecossistema , Fungos , Humanos
17.
Animals (Basel) ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36611706

RESUMO

The development of different innovative feed resources for livestock is important to provide the essential nutrients and diminish the emission of greenhouse gases. The purpose of the present experiment was to study the response of replacing concentrate with Moringa oleifera leaves in terms of the nutrient intake, digestibility, enteric methane emissions, and performance of goat kids with a berseem-fodder-based diet under different roughage (R)-to-concentrate (C) ratios. Twenty-four goat kids (3 months of age) were distributed into four groups of six animals each, using a randomized block design (RBD). Kids of Group I (control) were fed a basal diet with 70R:30C without any tree leaf supplementation. Group II kids were fed with 60R:40C, where 10% of the concentrate mix was replaced with Moringa leaf (ML powder). In Group III, kids were fed with 70R:30C with 20% ML replacement. In Group IV, kids were fed with 80R:20C with 20% ML replacement. A metabolic trial was conducted after 180 days of feeding to assess the impact of ML on blood metabolites, antioxidant status, immunity parameters, and enteric methane emissions. The results revealed that dry matter digestibility, organic matter, and NDF were better (p < 0.05) in ML-treated kids (GII and GIII) compared to GI. Feed conversion and average daily gain were also enhanced (p < 0.05) in the treated groups as compared to controls. Total blood protein and albumin were increased in GII and GIII kids compared to GI. Plasma cholesterol levels were decreased (p < 0.001) in GII, GIII, and GIV as compared to GI. Glutathione peroxidase, catalase, and superoxide dismutase enzyme activities were also enhanced in GII, GIII, and GIV compared to controls. ML supplementation improved cell-mediated immunity and humoral immunity responses in goat kids. Enteric methane emissions decreased in the treated groups as compared to the controls. Moringa oleifera leaf may be used up to the level of 10−20% in concentrate mixes to improve digestibility, blood biochemical parameters, immunity status, and antioxidant activity in goat kids. Supplementation of ML not only enhanced the digestion and health of goat kids, but also decreased their methane emissions.

18.
PLoS One ; 16(12): e0261338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914805

RESUMO

In recent times, injudicious use of paclobutrazol (PBZ) in mango orchards deteriorates the soil quality and fertility by persistence nature and causes a serious ecosystem imbalance. In this study, a new Klebsiella pneumoniae strain M6 (MW228061) was isolated from mango rhizosphere and characterized as a potent plant growth promoter, biocontrol, and PBZ degrading agent. The strain M6 efficiently utilizes PBZ as carbon, energy and nitrogen source and degrades up to 98.28% (50 mgL-1 initial conc.) of PBZ at 15th day of incubation in MS medium. In the soil system first order degradation kinetics and linear model suggested 4.5 days was the theoretical half-life (t1/2 value) of PBZ with strain M6. Box Behnken design (BBD) model of Response surface methodology (RSM) showed pH 7.0, 31°C temperature, and 2.0 ml inoculum size (8 x 109 CFU mL-1) was optimized condition for maximum PBZ degradation with strain M6. Plant growth promoting attributes such as Zn, K, PO4 solubilization IAA, HCN and NH3 production of strain M6 showed positive results and were assessed quantitatively. The relation between plant growth promotion and PBZ degradation was analyzed by heat map, principal component analysis (PCA) and, clustal correlation analysis (CCA). Strain M6 was also showing a significant biocontrol activity against pathogenic fungi such as Fusarium oxysporum (MTCC-284), Colletotrichum gloeosporioides (MTCC- 2190), Pythium aphanidermatum (MTCC- 1024), Tropical race 1 (TR -1), and Tropical race 4 (TR -4). Hence, results of the study suggested that strain M6 can be utilized as an effective bio-agent to restore degraded land affected by persistent use of paclobutrazol.


Assuntos
Biodegradação Ambiental/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/metabolismo , Ecossistema , Desenvolvimento Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Rizosfera , Solo/química , Microbiologia do Solo , Triazóis/efeitos adversos
19.
BMC Plant Biol ; 21(1): 519, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749648

RESUMO

BACKGROUND: Since the World's population is increasing, it's critical to boost agricultural productivity to meet the rising demand for food and reduce poverty. Fertilizers are widely used in traditional agricultural methods to improve crop yield, but they have a number of negative environmental consequences such as nutrient losses, decrease fertility and polluted water and air. Researchers have been focusing on alternative crop fertilizers mechanisms to address these issues in recent years and nanobiofertilizers have frequently been suggested. "Nanophos" is a biofertilizer and contains phosphate-solubilising bacteria that solubilises insoluble phosphate and makes it available to the plants for improved growth and productivity as well as maintain soil health. This study evaluated the impact of nanophos on the growth and development of maize plants and its rhizospheric microbial community such as NPK solubilising microbes, soil enzyme activities and soil protein under field condition after 20, 40 and 60 days in randomized block design. RESULTS: Maize seeds treated with nanophos showed improvement in germination of seeds, plant height, number of leaves, photosynthetic pigments, total sugar and protein level over control. A higher activity of phenol, flavonoid, antioxidant activities and yield were noticed in nanophos treated plants over control. Positive shift in total bacterial count, nitrogen fixing bacteria, phosphate and potassium solubilizers were observed in the presence of nanophos as compared to control. Soil enzyme activities were significantly (P < 0.05) improved in treated soil and showed moderately correlation between treatments estimated using Spearman rank correlation test. Real time PCR and total soil protein content analysis showed enhanced microbial population in nanophos treated soil. Obtained results showed that nanophos improved the soil microbial population and thus improved the plant growth and productivity. CONCLUSION: The study concluded a stimulating effect of nanophos on Zea mays health and productivity and indicates good response towards total bacterial, NPK solubilising bacteria, soil enzymes, soil protein which equally showed positive response towards soil nutrient status. It can be a potential way to boost soil nutrient use efficiency and can be a better alternative to fertilizers used in the agriculture.


Assuntos
Agricultura/métodos , Microbiologia do Solo , Produção Agrícola , Microbiota , Solo
20.
Sci Rep ; 11(1): 20554, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654819

RESUMO

This study explores the comparative effect of conventional and organic treatments on the rhizosphere microbiome of Mangifera indica cv. Dashehari. The long-term exposures (about 20 years) were monitored under a subtropical ecosystem. Based on plant growth properties and acetylene reduction assay, 12 bacterial isolates (7 from G1-organic and 5 from G2-conventional systems) were identified as Pseudomonas and Bacillus spp. In the conventional system, dehydrogenase activity significantly decreased (0.053 µg TPF formed g-1 of soil h-1) and adversely affected the bacterial diversity composition. In comparison, organic treatments had a good impact on dehydrogenase activity (0.784 µg TPF formed g-1 of soil h-1), alkaline phosphatase (139.25 µg PNP g-1 soil h-1), and bacterial community composition. The Metagenomics approach targeted the V3 and V4 regions to see the impact in the phylum, order, family, genus, and species for both the treatments. Results showed that phylum Acidobacteria (13.6%), Firmicutes (4.84%), and Chloroflexi (2.56%) were dominating in the G2 system whereas phylum Bacteroides (14.55%), Actinobacteria (7.45%), and Proteobacteria (10.82%) were abundantly dominated in the G1 system. Metagenome sequences are at the NCBI-GenBank sequence read archive with SRX8289747 (G1) and SRX8289748 (G2) in the study PRJNA631113. Results indicated that conventional and organic conditions affect rhizosphere microbiome and their environment.


Assuntos
Mangifera/microbiologia , Microbiota , Agricultura Orgânica , Raízes de Plantas/microbiologia , Rizosfera , Biodiversidade , Metagenômica , Desenvolvimento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...