Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
medRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38712043

RESUMO

Background: Topical corticosteroids (TCS) are first-line therapies for numerous skin conditions. Topical Steroid Withdrawal (TSW) is a controversial diagnosis advocated by patients with prolonged TCS exposure who report severe systemic reactions upon treatment cessation. However, to date there have been no systematic clinical or mechanistic studies to distinguish TSW from other eczematous disorders. Methods: A re-analysis of a previous survey with eczematous skin disease was performed to evaluate potential TSW distinguishing symptoms. We subsequently conducted a pilot study of 16 patients fitting the proposed diagnostic criteria. We then performed: tissue metabolomics, transcriptomics, and immunostaining on skin biopsies; serum metabolomics and cytokine assessments; shotgun metagenomics on microbiome skin swabs; genome sequencing; followed by functional, mechanistic studies using human skin cell lines and mice. Results: Clinically distinct TSW symptoms included burning, flushing, and thermodysregulation. Metabolomics and transcriptomics both implicated elevated NAD+ oxidation stemming from increased expression of mitochondrial complex I and conversion of tryptophan into kynurenine metabolites. These abnormalities were induced by glucocorticoid exposure both in vitro and in a cohort of healthy controls (N=19) exposed to TCS. Targeting complex I via either metformin or the herbal compound berberine improved outcomes in both cell culture and in an open-label case series for patients with TSW. Conclusion: Taken together, our results suggest that TSW has a distinct dermatopathology. While future studies are needed to validate these results in larger cohorts, this work provides the first mechanistic evaluation into TSW pathology, and offers insights into clinical identification, pharmacogenomic candidates, and directed therapeutic strategies.

2.
Appl Microbiol Biotechnol ; 108(1): 339, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771520

RESUMO

The human microbiome, a diverse ecosystem of microorganisms within the body, plays pivotal roles in health and disease. This review explores site-specific microbiomes, their role in maintaining health, and strategies for their upkeep, focusing on oral, lung, vaginal, skin, and gut microbiota, and their systemic connections. Understanding the intricate relationships between these microbial communities is crucial for unraveling mechanisms underlying human health. Recent research highlights bidirectional communication between the gut and distant microbiome sites, influencing immune function, metabolism, and disease susceptibility. Alterations in one microbiome can impact others, emphasizing their interconnectedness and collective influence on human physiology. The therapeutic potential of gut microbiota in modulating distant microbiomes offers promising avenues for interventions targeting various disorders. Through interdisciplinary collaboration and technological advancements, we can harness the power of the microbiome to revolutionize healthcare, emphasizing microbiome-centric approaches to promote holistic well-being while identifying areas for future research.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbiota , Pele/microbiologia , Vagina/microbiologia , Pulmão/microbiologia , Boca/microbiologia , Feminino , Trato Gastrointestinal/microbiologia
3.
Commun Med (Lond) ; 4(1): 74, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637696

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a chronic, inflammatory disease characterized by dry, pruritic skin. In the U.S., the prevalence of AD has increased over three-fold since the 1970s. We previously reported a geographic association between isocyanate-containing air pollution and AD as well as mechanistic data demonstrating that isocyanates induce skin dysbiosis and activate the host itch receptor TRPA1. However, non-spatial models are susceptible to spatial confounding and may overlook other meaningful associations. METHODS: We added spatial analysis to our prior model, contrasting pollution data with clinical visits. In addition, we conducted a retrospective case-control survey of childhood exposure to BTEX-related products. Finally, we assessed implicated compounds, in pure form and as part of synthetic fabric, for their effect on the growth and metabolism of skin commensal bacteria. RESULTS: Spatial analysis implicate benzene, toluene, ethylbenzene, and, most significantly, xylene (BTEX) compounds. Survey odds ratios for AD were significant for xylene-derived polyester bed sheets (OR = 9.5; CI 2.2-40.1) and diisocyanate-containing wallpaper adhesive (OR = 6.5; CI 1.5-27.8). Staphylococcus aureus lives longer on synthetic textiles compared to natural textiles. Meanwhile, synthetic fabric exposure shifts the lipid metabolism of health-associated commensals (Roseomonas mucosa and S. epidermidis) away from therapeutic pathways. CONCLUSIONS: We propose that BTEX chemicals in their raw forms and in synthetic products represent a unifying hypothesis for environmentally induced AD flares through their ability to create dysbiosis in the skin microbiota and directly activate TRPA1. Unequal distribution of these pollutants may also influence racial disparities in AD rates.


Atopic dermatitis (AD) is a chronic, inflammatory disease characterized by dry, itchy skin that has become increasingly more common since around 1970. We aimed to identify chemicals that may cause atopic dermatitis (eczema). Building on prior work, we discovered that these chemicals could prevent the good bacteria that live on the skin from making the lipids and oils needed to keep human skin healthy. In this study, we combined new research methods with patient surveys. We link eczema to the chemical xylene, which is found in numerous home products. Exposure to xylene, benzene, or isocyanate containing fabrics (polyester, nylon, or spandex) disrupted the normal functions of skin bacteria. Our results indicate exposure to synthetic fabrics and other sources of these chemicals may contribute to eczema and deepen the understanding of how the environment can drive common diseases.

4.
J Allergy Clin Immunol ; 153(4): 1148-1154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38262502

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by dry, pruritic skin. Several studies have described nocturnal increases in itching behavior, suggesting a role for the circadian rhythm in modulating symptom severity. However, the circadian rhythm of metabolites in the skin and serum of patients with AD is yet to be described. OBJECTIVE: We sought to assess circadian patterns of skin and serum metabolism in patients with AD. METHODS: Twelve patients with moderate to severe AD and 5 healthy volunteers were monitored for 28 hours in a controlled environment. Serum was collected every 2 hours and tape strips every 4 hours from both lesional and nonlesional skin in participants with AD and location-, sex-, and age-matched healthy skin of controls. We then performed an untargeted metabolomics analysis, examining the circadian peaks of metabolism in patients with AD. RESULTS: Distinct metabolic profiles were observed in AD versus control samples. When accounting for time of collection, the greatest differences in serum metabolic pathways were observed in arachidonic acid, steroid biosynthesis, and terpenoid backbone biosynthesis. We identified 42 circadian peaks in AD or control serum and 17 in the skin. Pathway enrichment and serum-skin metabolite correlation varied throughout the day. Differences were most evident in the late morning and immediately after sleep onset. CONCLUSIONS: Although limited by a small sample size and observational design, our findings suggest that accounting for sample collection time could improve biomarker detection studies in AD and highlight that metabolic changes may be associated with nocturnal differences in symptom severity.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/metabolismo , Pele/metabolismo , Prurido/metabolismo , Ritmo Circadiano , Metaboloma
6.
Microorganisms ; 11(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004804

RESUMO

The methanogenic strain Mx-05T was isolated from the human fecal microbiome. A phylogenetic analysis based on the 16S rRNA gene and protein marker genes indicated that the strain is affiliated with the order Methanomassiliicoccales. It shares 86.9% 16S rRNA gene sequence identity with Methanomassiliicoccus luminyensis, the only member of this order previously isolated. The cells of Mx-05T were non-motile cocci, with a diameter range of 0.4-0.7 µm. They grew anaerobically and reduced methanol, monomethylamine, dimethylamine, and trimethylamine into methane, using H2 as an electron donor. H2/CO2, formate, ethanol, and acetate were not used as energy sources. The growth of Mx-05T required an unknown medium factor(s) provided by Eggerthella lenta and present in rumen fluid. Mx-05T grew between 30 °C and 40 °C (optimum 37 °C), over a pH range of 6.9-8.3 (optimum pH 7.5), and between 0.02 and 0.34 mol.L-1 NaCl (optimum 0.12 mol.L-1 NaCl). The genome is 1.67 Mbp with a G+C content of 55.5 mol%. Genome sequence annotation confirmed the absence of the methyl branch of the H4MPT Wood-Ljungdahl pathway, as described for other Methanomassiliicoccales members. Based on an average nucleotide identity analysis, we propose strain Mx-05T as being a novel representative of the order Methanomassiliicoccales, within the novel family Methanomethylophilaceae, for which the name Methanomethylophilus alvi gen. nov, sp. nov. is proposed. The type strain is Mx-05T (JCM 31474T).

7.
Microbiol Resour Announc ; 12(11): e0052023, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37819097

RESUMO

Roseomonas mucosa is a bacterium that is found in the natural microbiota of human skin. Here, we present de novo sequence assemblies from R. mucosa isolated from the skin microflora of three healthy human volunteers that were used to treat atopic dermatitis patients.

8.
Microbiol Resour Announc ; 12(11): e0052123, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37847010

RESUMO

Roseomonas mucosa is associated with the normal skin microflora. Here, we present de novo sequence assemblies from R. mucosa isolates obtained from the skin lesions of three atopic dermatitis patients.

9.
Environ Sci Technol Lett ; 10(5): 452-457, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37692200

RESUMO

Compared to the myriad of known triggers for rhinitis and asthma, environmental exposure research for atopic dermatitis (AD) is not well established. We recently reported that an untargeted search of U.S. Environmental Protection Agency (EPA) databases versus AD rates by United States (U.S.) postal codes revealed that isocyanates, such as toluene diisocyanate (TDI), are the pollutant class with the strongest spatiotemporal and epidemiologic association with AD. We further demonstrated that (di)isocyanates disrupt ceramide-family lipid production in commensal bacteria and activate the thermo-itch host receptor TRPA1. In this report, we reanalyzed regions of the U.S. with low levels of diisocyanate pollution to assess if a different chemical class may contribute. We identified antimony compounds as the top associated pollutant in such regions. Exposure to antimony compounds would be expected from brake dust in high-traffic areas, smelting plants, bottled water, and dust from aerosolized soil. Like TDI, antimony inhibited ceramide-family lipid production in Roseomonas mucosa and activated TRPA1 in human neurons. While further epidemiologic research will be needed to directly evaluate antimony exposure with surrounding AD prevalence and severity, these data suggest that compounds which are epidemiologically associated with AD, inhibit commensal lipid production, and activate TRPA1 may be causally related to AD pathogenesis.

10.
Front Microbiol ; 14: 1227132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608947

RESUMO

Antibiotic resistance in bacteria has emerged as a serious public health threat worldwide. Aquatic environments including irrigation-purpose wastewaters facilitate the emergence and transmission of antibiotic-resistant bacteria and antibiotic resistance genes leading to detrimental effects on human health and environment sustainability. Considering the paramount threat of ever-increasing antibiotic resistance to human health, there is an urgent need for continuous environmental monitoring of antibiotic-resistant bacteria and antibiotic resistance genes in wastewater being used for irrigation in Indian agro-ecosystems. In this study, the prevalence of antibiotic resistance in Gram-negative bacteria isolated from irrigation-purpose wastewater samples from Sirmaur and Solan districts of Himachal Pradesh was determined. Bacterial isolates of genera Escherichia, Enterobacter, Hafnia, Shigella, Citrobacter, and Klebsiella obtained from 11 different geographical locations were found to exhibit resistance against ampicillin, amoxyclav, cefotaxime, co-trimoxazole, tobramycin, cefpodoxime and ceftazidime. However, all the isolates were sensitive to aminoglycoside antibiotic gentamicin. Enterobacter spp. and Escherichia coli showed predominance among all the isolates. Multidrug-resistance phenotype was observed with isolate AUK-06 (Enterobacter sp.) which exhibited resistant to five antibiotics. Isolate AUK-02 and AUK-09, both E. coli strains showed resistant phenotypes to four antibiotics each. Phenotypic detection revealed that six isolates were positive for extended-spectrum ß-lactamases which includes two isolates from Enterobacter spp. and E. coli each and one each from Shigella sp. and Citrobacter sp. Overall, the findings revealed the occurrence of antibiotic resistant and ESBL-positive bacterial isolates in wastewaters utilized for irrigation purpose in the study area and necessitate continuous monitoring and precautionary interventions. The outcomes of the study would be of significant clinical, epidemiological, and agro-environmental importance in designing effective wastewater management and environmental pollution control strategies.

11.
Allergy ; 78(10): 2724-2731, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422700

RESUMO

BACKGROUND: While the microbiome is increasingly seen as a targetable contributor to atopic dermatitis (AD), questions remain as to whether the dysbiosis is secondary to diseased skin or if it predates symptom onset. Previous work has evaluated how the skin microbiome changes with age and established the influence of factors like delivery mode and breastfeeding on global microbiome diversity. However, these studies were unable to identify taxa which predict subsequent AD. METHODS: Skin swab samples were collected from the first week of life for 72 children in the neonatal intensive care unit (NICU) at a single site hospital. Participants were followed for 3 years to determine their health status. We applied shotgun metagenomic sequencing to assess the microbiome differences between 31 children who went on to develop AD and 41 controls. RESULTS: We identified that subsequent development of AD was associated with differential abundance of several bacterial and fungal taxa as well as several metabolic pathways, each of which have been previously associated with active AD. CONCLUSIONS: Our work provides evidence of reproducibility for the previously reported dysbiotic signatures predating AD onset while also expanding prior findings through the first use of metagenomic assessment prior to AD onset. While extrapolation of our findings beyond the pre-term, NICU cohort is limited, our findings add to the evidence that the dysbiosis associated with AD pre-dates disease onset rather than reflect a secondary consequence of skin inflammation.


Assuntos
Dermatite Atópica , Microbiota , Criança , Recém-Nascido , Humanos , Dermatite Atópica/diagnóstico , Dermatite Atópica/microbiologia , Disbiose , Reprodutibilidade dos Testes , Pele/microbiologia
12.
PLoS One ; 18(3): e0282569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36877675

RESUMO

We recently used EPA databases to identify that isocyanates, most notably toluene diisocyanate (TDI), were the pollutant class with the strongest spatiotemporal and epidemiologic association with atopic dermatitis (AD). Our findings demonstrated that isocyanates like TDI disrupted lipid homeostasis and modeled benefit in commensal bacteria like Roseomonas mucosa through disrupting nitrogen fixation. However, TDI has also been established to activate transient receptor potential ankyrin 1 (TRPA1) in mice and thus could directly contribute to AD through induction of itch, rash, and psychological stress. Using cell culture and mouse models, we now demonstrate that TDI induced skin inflammation in mice as well as calcium influx in human neurons; each of these findings were dependent on TRPA1. Furthermore, TRPA1 blockade synergized with R. mucosa treatment in mice to improve TDI-independent models of AD. Finally, we show that the cellular effects of TRPA1 are related to shifting the balance of the tyrosine metabolites epinephrine and dopamine. This work provides added insight into the potential role, and therapeutic potential, or TRPA1 in the pathogenesis of AD.


Assuntos
Dermatite Atópica , Exantema , Tolueno 2,4-Di-Isocianato , Humanos , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Prurido , Isocianatos , Proteínas do Citoesqueleto , Canal de Cátion TRPA1
13.
Sci Adv ; 9(1): eade8898, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608129

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin condition increasing in industrial nations at a pace that suggests environmental drivers. We hypothesize that the dysbiosis associated with AD may signal microbial adaptations to modern pollutants. Having previously modeled the benefits of health-associated Roseomonas mucosa, we now show that R. mucosa fixes nitrogen in the production of protective glycerolipids and their ceramide by-products. Screening EPA databases against the clinical visit rates identified diisocyanates as the strongest predictor of AD. Diisocyanates disrupted the production of beneficial lipids and therapeutic modeling for isolates of R. mucosa as well as commensal Staphylococcus. Last, while topical R. mucosa failed to meet commercial end points in a placebo-controlled trial, the subgroup who completed the full protocol demonstrated sustained, clinically modest, but statistically significant clinical improvements that differed by study site diisocyanate levels. Therefore, diisocyanates show temporospatial and epidemiological association with AD while also inducing eczematous dysbiosis.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/epidemiologia , Dermatite Atópica/diagnóstico , Disbiose/microbiologia , Isocianatos/uso terapêutico , Prevalência , Bactérias , Pele/microbiologia
14.
Metabolites ; 12(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35736430

RESUMO

MALDI imaging is a novel technique with which to study the pathophysiologies of diseases. Advancements in the field of metabolomics and lipidomics have been instrumental in mapping the signaling pathways involved in various diseases, such as cancer and neurodegenerative diseases (Parkinson's). MALDI imaging is flexible and can handle many sample types. Researchers primarily use either formalin-fixed paraffin-embedded (FFPE) or fresh frozen tissue samples to answer their scientific questions. FFPE samples allow for easy long-term storage, but the requirement for extensive sample processing may limit the ability to provide a clear picture of metabolite distribution in biological tissue. Frozen samples require less handling, but present logistical challenges for collection and storage. A few studies, mostly focused on cancer cell lines, have directly compared the results of MALDI imaging using these two tissue fixation approaches. Herein, we directly compared FFPE and fresh frozen sample preparation for murine skin samples, and performed detailed pathway analysis to understand how differences in processing impact MALDI results from otherwise identical tissues. Our results indicate that FFPE and fresh frozen methods differ significantly in the putative identified metabolite content and distribution. The fixation methods shared only 2037 metabolites in positive mode and only 4079 metabolites in negative ion mode. However, both fixation approaches allowed for downstream fluorescent staining, which may save time and resources for samples that are clinically precious. This work represents a direct comparison of the impacts of the two main tissue processing methods on subsequent MALDI-MSI. While our results are similar to previous work in cancer tissue, they provide novel insights for those using MALDI-MSI in skin.

15.
Gut Microbes ; 14(1): 2070392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35549618

RESUMO

The age-associated alterations in microbiomes vary across populations due to the influence of genetics and lifestyles. To the best of our knowledge, the microbial changes associated with aging have not yet been investigated in Singapore adults. We conducted shotgun metagenomic sequencing of fecal and saliva samples, as well as fecal metabolomics to characterize the gut and oral microbial communities of 62 healthy adult male Singaporeans, including 32 young subjects (age, 23.1 ± 1.4 years) and 30 elderly subjects (age, 69.0 ± 3.5 years). We identified 8 gut and 13 oral species that were differentially abundant in elderly compared to young subjects. By combining the gut and oral microbiomes, 25 age-associated oral-gut species connections were identified. Moreover, oral bacteria Acidaminococcus intestine and Flavonifractor plautii were less prevalent/abundant in elderly gut samples than in young gut samples, whereas Collinsella aerofaciens and Roseburia hominis showed the opposite trends. These results indicate the varied gut-oral communications with aging. Subsequently, we expanded the association studies on microbiome, metabolome and host phenotypic parameters. In particular, Eubacterium eligens increased in elderly compared to young subjects, and was positively correlated with triglycerides, which implies that the potential role of E. eligens in lipid metabolism is altered during the aging process. Our results demonstrated aging-associated changes in the gut and oral microbiomes, as well as the connections between metabolites and host-microbe interactions, thereby deepening the understanding of alterations in the human microbiome during the aging process in a Singapore population.


Assuntos
Microbioma Gastrointestinal , Adulto , Idoso , Envelhecimento , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Masculino , Metaboloma , Metagenômica , Singapura , Adulto Jovem
16.
Genomics ; 114(2): 110281, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124176

RESUMO

One cellulose-degrading strain CB08 and two xylan-degrading strains XB500-5 and X503 were isolated from buffalo rumen. All the strains were designated as putative novel species of Butyrivibrio based on phylogeny, phylogenomy, digital DNA-DNA hybridization, and average nucleotide identity with their closest type strains. The draft genome length of CB08 was ~3.54 Mb, while X503 and XB500-5 genome sizes were ~3.24 Mb and ~3.27 Mb, respectively. Only 68.28% of total orthologous clusters were shared among three genomes, and 40-44% of genes were identified as hypothetical proteins. The presence of genes encoding diverse carbohydrate-active enzymes (CAZymes) exhibited the lignocellulolytic potential of these strains. Further, the genome annotations revealed the metabolic pathways for monosaccharide fermentation to acetate, butyrate, lactate, ethanol, and hydrogen. The presence of genes for chemotaxis, antibiotic resistance, antimicrobial activity, synthesis of vitamins, and essential fatty acid suggested the versatile metabolic nature of these Butyrivibrio strains in the rumen environment.


Assuntos
Butyrivibrio , Rúmen , Animais , Butyrivibrio/genética , Butyrivibrio/metabolismo , DNA/metabolismo , Ecossistema , Genômica , Filogenia
17.
Appl Microbiol Biotechnol ; 102(7): 3095-3104, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29497795

RESUMO

Methanogens are anaerobic prokaryotes from the domain archaea that utilize hydrogen to reduce carbon dioxide, acetate, and a variety of methyl compounds into methane. Earlier believed to inhabit only the extreme environments, these organisms are now reported to be found in various environments including mesophilic habitats and the human body. The biological significance of methanogens for humans has been re-evaluated in the last few decades. Their contribution towards pathogenicity has received much less attention than their bacterial counterparts. In humans, methanogens have been studied in the gastrointestinal tract, mouth, and vagina, and considerable focus has shifted towards elucidating their possible role in the progression of disease conditions in humans. Methanoarchaea are also part of the human skin microbiome and proposed to play a role in ammonia turnover. Compared to hundreds of different bacterial species, the human body harbors only a handful of methanogen species represented by Methanobrevibacter smithii, Methanobrevibacter oralis, Methanosphaera stadtmanae, Methanomassiliicoccus luminyensis, Candidatus Methanomassiliicoccus intestinalis, and Candidatus Methanomethylophilus alvus. Their presence in the human gut suggests an indirect correlation with severe diseases of the colon. In this review, we examine the current knowledge about the methanoarchaea in the human body and possible beneficial or less favorable interactions.


Assuntos
Euryarchaeota/fisiologia , Enteropatias/microbiologia , Microbiota , Humanos , Metano/metabolismo , Methanobacteriaceae/fisiologia , Methanobrevibacter/fisiologia , Dermatopatias/microbiologia
18.
Microb Ecol Health Dis ; 28(1): 1308070, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28572754

RESUMO

Background: The availability of fresh stool samples is a prerequisite in most gut microbiota functional studies. Objective: Strategies for amplification and long-term gut microbiota preservation from fecal samples would favor sample sharing, help comparisons and reproducibility over time and between laboratories, and improve the safety and ethical issues surrounding fecal microbiota transplantations. Design: Taking advantage of in vitro gut-simulating systems, we amplified the microbial repertoire of a fresh fecal sample and assessed the viability and resuscitation of microbes after preservation with some common intracellular and extracellular acting cryoprotective agents (CPAs), alone and in different combinations. Preservation efficiencies were determined after 3 and 6 months and compared with the fresh initial microbiota diversity and metabolic activity, using the chemostat-based Environmental Control System for Intestinal Microbiota (ECSIM) in vitro model of the gut environment. Microbial populations were tested for fermentation gas, short-chain fatty acids, and composition of amplified and resuscitated microbiota, encompassing methanogenic archaea. Results: Amplification of the microbial repertoire from a fresh fecal sample was achieved with high fidelity. Dimethylsulfoxide, alone or mixed with other CPAs, showed the best efficiency for functional preservation, and the duration of preservation had little effect. Conclusions: The amplification and resuscitation of fecal microbiota can be performed using specialized in vitro gut models. Correct amplification of the initial microbes should ease the sharing of clinical samples and improve the safety of fecal microbiota transplantation. Abbreviations: CDI, Clostridium difficile infection; CPA, cryoprotective agent; D, DMSO, dimethylsulfoxide; FMT, fecal microbiota transplantation; G, glycerol; IBD, inflammatory bowel disease; P, PEG-4000, polyethylene glycol 4000 g.mol-1; SCFA, short-chain fatty acid; SNR, signal-to-noise ratio.

19.
Microbiologyopen ; 6(4)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28303666

RESUMO

Studies on methanogenesis from freshwater sediments have so far primarily focused on lake sediments. To expand our knowledge on the community composition of methanogenic archaea in river sediments, we studied the abundance and diversity of methanogenic archaea at two localities along a vertical profile (top 50 cm) obtained from sediment samples from Sitka stream (the Czech Republic). In this study, we compare two sites which previously have been shown to have a 10-fold different methane emission. Archaeal and methanogen abundance were analyzed by real-time PCR and T-RFLP. Our results show that the absolute numbers for the methanogenic community (qPCR) are relatively stable along a vertical profile as well as for both study sites. This was also true for the archaeal community and for the three major methanogenic orders in our samples (Methanosarcinales, Methanomicrobiales, and Methanobacteriales). However, the underlying community structure (T-RFLP) reveals different community compositions of the methanogens for both locations as well as for different depth layers and over different sampling times. In general, our data confirm that Methanosarcinales together with Methanomicrobiales are the two dominant methanogenic orders in river sediments, while members of Methanobacteriales contribute a smaller community and Methanocellales are only rarely present in this sediment. Our results show that the previously observed 10-fold difference in methane emission of the two sites could not be explained by molecular methods alone.


Assuntos
Archaea/classificação , Archaea/metabolismo , Biodiversidade , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Rios/microbiologia , Archaea/genética , República Tcheca , DNA Arqueal/genética , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase em Tempo Real
20.
Appl Microbiol Biotechnol ; 99(14): 5801-15, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26088176

RESUMO

Until recently, human gut microbiota was believed to be colonized by few methanogenic archaeal species. Much higher microbial diversity within the human gut was revealed by the use of molecular approaches as compared to routine microbiological techniques, but still, a lot remains unknown. Molecular techniques has the advantage of being rapid, reproducible, and can be highly discriminative as compared to conventional culturing methods. Some of them provide both qualitative and quantitative information. However, the choice of method should be taken with care to avoid biases. The advent of next-generation sequencing gives much deeper information from which functional and ecological hypotheses can be drawn. In this review, molecular techniques that are currently used together with their possible future developments to study gut methanogenic communities are indicated along with their limitations and difficulties that are encountered during their implementation. Moreover, the high amount of metagenomics data from the human gut microbiome indicate that this environment could be a paradigm for new directions in methanogen diversity studies and help to develop new approaches for other environments as well. Concerning humans, this should help us to better understand the possible association of methanogens with some of the diseased conditions and their peculiar distribution among age groups in human.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Metagenômica/métodos , Metano/metabolismo , Microbiota , Archaea/genética , Bactérias/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...