Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(3): 112179, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943868

RESUMO

The cGAS-STING pathway is central to the interferon response against DNA viruses. However, recent studies are increasingly demonstrating its role in the restriction of some RNA viruses. Here, we show that the cGAS-STING pathway also contributes to the interferon response against noroviruses, currently the commonest causes of infectious gastroenteritis worldwide. We show a significant reduction in interferon-ß induction and a corresponding increase in viral replication in norovirus-infected cells after deletion of STING, cGAS, or IFI16. Further, we find that immunostimulatory host genome-derived DNA and mitochondrial DNA accumulate in the cytosol of norovirus-infected cells. Lastly, overexpression of the viral NS4 protein is sufficient to drive the accumulation of cytosolic DNA. Together, our data find a role for cGAS, IFI16, and STING in the restriction of noroviruses and show the utility of host genomic DNA as a damage-associated molecular pattern in cells infected with an RNA virus.


Assuntos
DNA Mitocondrial , Transdução de Sinais , DNA Mitocondrial/genética , Genômica , Imunidade Inata/genética , Interferons , Nucleotidiltransferases/metabolismo , Transdução de Sinais/genética , Proteínas de Membrana/metabolismo
2.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35106603

RESUMO

Identifying linked cases of infection is a critical component of the public health response to viral infectious diseases. In a clinical context, there is a need to make rapid assessments of whether cases of infection have arrived independently onto a ward, or are potentially linked via direct transmission. Viral genome sequence data are of great value in making these assessments, but are often not the only form of data available. Here, we describe A2B-COVID, a method for the rapid identification of potentially linked cases of COVID-19 infection designed for clinical settings. Our method combines knowledge about infection dynamics, data describing the movements of individuals, and evolutionary analysis of genome sequences to assess whether data collected from cases of infection are consistent or inconsistent with linkage via direct transmission. A retrospective analysis of data from two wards at Cambridge University Hospitals NHS Foundation Trust during the first wave of the pandemic showed qualitatively different patterns of linkage between cases on designated COVID-19 and non-COVID-19 wards. The subsequent real-time application of our method to data from the second epidemic wave highlights its value for monitoring cases of infection in a clinical context.


Assuntos
COVID-19 , SARS-CoV-2 , Hospitais , Humanos , Pandemias , Estudos Retrospectivos , SARS-CoV-2/genética
3.
Nat Commun ; 13(1): 751, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136068

RESUMO

Understanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , SARS-CoV-2/genética , Universidades , COVID-19/prevenção & controle , COVID-19/virologia , Busca de Comunicante , Genoma Viral/genética , Genômica , Humanos , Filogenia , RNA Viral/genética , Fatores de Risco , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Estudantes , Reino Unido/epidemiologia , Universidades/estatística & dados numéricos
4.
Elife ; 102021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34387545

RESUMO

Monitoring the spread of SARS-CoV-2 and reconstructing transmission chains has become a major public health focus for many governments around the world. The modest mutation rate and rapid transmission of SARS-CoV-2 prevents the reconstruction of transmission chains from consensus genome sequences, but within-host genetic diversity could theoretically help identify close contacts. Here we describe the patterns of within-host diversity in 1181 SARS-CoV-2 samples sequenced to high depth in duplicate. 95.1% of samples show within-host mutations at detectable allele frequencies. Analyses of the mutational spectra revealed strong strand asymmetries suggestive of damage or RNA editing of the plus strand, rather than replication errors, dominating the accumulation of mutations during the SARS-CoV-2 pandemic. Within- and between-host diversity show strong purifying selection, particularly against nonsense mutations. Recurrent within-host mutations, many of which coincide with known phylogenetic homoplasies, display a spectrum and patterns of purifying selection more suggestive of mutational hotspots than recombination or convergent evolution. While allele frequencies suggest that most samples result from infection by a single lineage, we identify multiple putative examples of co-infection. Integrating these results into an epidemiological inference framework, we find that while sharing of within-host variants between samples could help the reconstruction of transmission chains, mutational hotspots and rare cases of superinfection can confound these analyses.


The COVID-19 pandemic has had major health impacts across the globe. The scientific community has focused much attention on finding ways to monitor how the virus responsible for the pandemic, SARS-CoV-2, spreads. One option is to perform genetic tests, known as sequencing, on SARS-CoV-2 samples to determine the genetic code of the virus and to find any differences or mutations in the genes between the viral samples. Viruses mutate within their hosts and can develop into variants that are able to more easily transmit between hosts. Genetic sequencing can reveal how genetically similar two SARS-CoV-2 samples are. But tracking how SARS-CoV-2 moves from one person to the next through sequencing can be tricky. Even a sample of SARS-CoV-2 viruses from the same individual can display differences in their genetic material or within-host variants. Could genetic testing of within-host variants shed light on factors driving SARS-CoV-2 to evolve in humans? To get to the bottom of this, Tonkin-Hill, Martincorena et al. probed the genetics of SARS-CoV-2 within-host variants using 1,181 samples. The analyses revealed that 95.1% of samples contained within-host variants. A number of variants occurred frequently in many samples, which were consistent with mutational hotspots in the SARS-CoV-2 genome. In addition, within-host variants displayed mutation patterns that were similar to patterns found between infected individuals. The shared within-host variants between samples can help to reconstruct transmission chains. However, the observed mutational hotspots and the detection of multiple strains within an individual can make this challenging. These findings could be used to help predict how SARS-CoV-2 evolves in response to interventions such as vaccines. They also suggest that caution is needed when using information on within-host variants to determine transmission between individuals.


Assuntos
COVID-19/genética , COVID-19/fisiopatologia , Variação Genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Mutação , SARS-CoV-2/genética , Sequência de Bases , Humanos , Pandemias , Filogenia
5.
Elife ; 102021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34425938

RESUMO

SARS-CoV-2 is notable both for its rapid spread, and for the heterogeneity of its patterns of transmission, with multiple published incidences of superspreading behaviour. Here, we applied a novel network reconstruction algorithm to infer patterns of viral transmission occurring between patients and health care workers (HCWs) in the largest clusters of COVID-19 infection identified during the first wave of the epidemic at Cambridge University Hospitals NHS Foundation Trust, UK. Based upon dates of individuals reporting symptoms, recorded individual locations, and viral genome sequence data, we show an uneven pattern of transmission between individuals, with patients being much more likely to be infected by other patients than by HCWs. Further, the data were consistent with a pattern of superspreading, whereby 21% of individuals caused 80% of transmission events. Our study provides a detailed retrospective analysis of nosocomial SARS-CoV-2 transmission, and sheds light on the need for intensive and pervasive infection control procedures.


The COVID-19 pandemic, caused by the SARS-CoV-2 virus, presents a global public health challenge. Hospitals have been at the forefront of this battle, treating large numbers of sick patients over several waves of infection. Finding ways to manage the spread of the virus in hospitals is key to protecting vulnerable patients and workers, while keeping hospitals running, but to generate effective infection control, researchers must understand how SARS-CoV-2 spreads. A range of factors make studying the transmission of SARS-CoV-2 in hospitals tricky. For instance, some people do not present any symptoms, and, amongst those who do, it can be difficult to determine whether they caught the virus in the hospital or somewhere else. However, comparing the genetic information of the SARS-CoV-2 virus from different people in a hospital could allow scientists to understand how it spreads. Samples of the genetic material of SARS-CoV-2 can be obtained by swabbing infected individuals. If the genetic sequences of two samples are very different, it is unlikely that the individuals who provided the samples transmitted the virus to one another. Illingworth, Hamilton et al. used this information, along with other data about how SARS-CoV-2 is transmitted, to develop an algorithm that can determine how the virus spreads from person to person in different hospital wards. To build their algorithm, Illingworth, Hamilton et al. collected SARS-CoV-2 genetic data from patients and staff in a hospital, and combined it with information about how SARS-CoV-2 spreads and how these people moved in the hospital . The algorithm showed that, for the most part, patients were infected by other patients (20 out of 22 cases), while staff were infected equally by patients and staff. By further probing these data, Illingworth, Hamilton et al. revealed that 80% of hospital-acquired infections were caused by a group of just 21% of individuals in the study, identifying a 'superspreader' pattern. These findings may help to inform SARS-CoV-2 infection control measures to reduce spread within hospitals, and could potentially be used to improve infection control in other contexts.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Surtos de Doenças/estatística & dados numéricos , Hospitais/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
6.
Elife ; 102021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33650490

RESUMO

COVID-19 poses a major challenge to care homes, as SARS-CoV-2 is readily transmitted and causes disproportionately severe disease in older people. Here, 1167 residents from 337 care homes were identified from a dataset of 6600 COVID-19 cases from the East of England. Older age and being a care home resident were associated with increased mortality. SARS-CoV-2 genomes were available for 700 residents from 292 care homes. By integrating genomic and temporal data, 409 viral clusters within the 292 homes were identified, indicating two different patterns - outbreaks among care home residents and independent introductions with limited onward transmission. Approximately 70% of residents in the genomic analysis were admitted to hospital during the study, providing extensive opportunities for transmission between care homes and hospitals. Limiting viral transmission within care homes should be a key target for infection control to reduce COVID-19 mortality in this population.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Casas de Saúde , SARS-CoV-2/genética , Idoso de 80 Anos ou mais , COVID-19/virologia , Surtos de Doenças , Inglaterra/epidemiologia , Feminino , Humanos , Transmissão de Doença Infecciosa do Paciente para o Profissional , Transmissão de Doença Infecciosa do Profissional para o Paciente , Masculino , Polimorfismo de Nucleotídeo Único , Análise de Sequência , Fatores de Tempo
7.
J Gen Virol ; 101(10): 1090-1102, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32692647

RESUMO

Some free fatty acids derived from milk and vegetable oils are known to have potent antiviral and antibacterial properties. However, therapeutic applications of short- to medium-chain fatty acids are limited by physical characteristics such as immiscibility in aqueous solutions. We evaluated a novel proprietary formulation based on an emulsion of short-chain caprylic acid, ViroSAL, for its ability to inhibit a range of viral infections in vitro and in vivo. In vitro, ViroSAL inhibited the enveloped viruses Epstein-Barr, measles, herpes simplex, Zika and orf parapoxvirus, together with Ebola, Lassa, vesicular stomatitis and severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) pseudoviruses, in a concentration- and time-dependent manner. Evaluation of the components of ViroSAL revealed that caprylic acid was the main antiviral component; however, the ViroSAL formulation significantly inhibited viral entry compared with caprylic acid alone. In vivo, ViroSAL significantly inhibited Zika and Semliki Forest virus replication in mice following the inoculation of these viruses into mosquito bite sites. In agreement with studies investigating other free fatty acids, ViroSAL had no effect on norovirus, a non-enveloped virus, indicating that its mechanism of action may be surfactant disruption of the viral envelope. We have identified a novel antiviral formulation that is of great interest for the prevention and/or treatment of a broad range of enveloped viruses, particularly those of the skin and mucosal surfaces.


Assuntos
Antivirais , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vírus , Infecção por Zika virus , Zika virus , Animais , Antivirais/farmacologia , Lipídeos , Camundongos , Internalização do Vírus
8.
mBio ; 11(2)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184238

RESUMO

Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system.IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture.


Assuntos
Células Epiteliais/virologia , Imunidade Inata , Intestinos/citologia , Norovirus/fisiologia , RNA Polimerase II/metabolismo , Replicação Viral , Linhagem Celular , Células Epiteliais/imunologia , Humanos , Interferon Tipo I/imunologia , Intestinos/virologia , Janus Quinases/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Transcrição Gênica
9.
Elife ; 82019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31403400

RESUMO

Knowledge of the host factors required for norovirus replication has been hindered by the challenges associated with culturing human noroviruses. We have combined proteomic analysis of the viral translation and replication complexes with a CRISPR screen, to identify host factors required for norovirus infection. The core stress granule component G3BP1 was identified as a host factor essential for efficient human and murine norovirus infection, demonstrating a conserved function across the Norovirus genus. Furthermore, we show that G3BP1 functions in the novel paradigm of viral VPg-dependent translation initiation, contributing to the assembly of translation complexes on the VPg-linked viral positive sense RNA genome by facilitating ribosome recruitment. Our data uncovers a novel function for G3BP1 in the life cycle of positive sense RNA viruses and identifies the first host factor with pan-norovirus pro-viral activity.


Assuntos
DNA Helicases/metabolismo , Interações Hospedeiro-Patógeno , Norovirus/crescimento & desenvolvimento , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Biossíntese de Proteínas , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas Virais/biossíntese , Animais , Infecções por Caliciviridae , Linhagem Celular , Humanos , Camundongos
10.
Wellcome Open Res ; 4: 82, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31372503

RESUMO

Background: Norovirus, also known as the winter vomiting bug, is the predominant cause of non-bacterial gastroenteritis worldwide. Disease control is predicated on a robust innate immune response during the early stages of infection. Double-stranded RNA intermediates generated during viral genome replication are recognised by host innate immune sensors in the cytoplasm, activating the strongly antiviral interferon gene programme. Ifit proteins (interferon induced proteins with tetratricopeptide repeats), which are highly expressed during the interferon response, have been shown to directly inhibit viral protein synthesis as well as regulate innate immune signalling pathways. Ifit1 is well-characterised to inhibit viral translation by sequestration of eukaryotic initiation factors or by directly binding to the 5' terminus of foreign RNA, particularly those with non-self cap structures. However, noroviruses have a viral protein, VPg, covalently linked to the 5' end of the genomic RNA, which acts as a cap substitute to recruit the translation initiation machinery. Methods: Ifit1 knockout RAW264.7 murine macrophage-like cells were generated using CRISPR-Cas9 gene editing. These cells were analysed for their ability to support murine norovirus infection, determined by virus yield, and respond to different immune stimuli, assayed by quantitative PCR. The effect of Ifit proteins on norovirus translation was also tested in vitro. Results: Here, we show that VPg-dependent translation is completely refractory to Ifit1-mediated translation inhibition in vitro and Ifit1 cannot bind the 5' end of VPg-linked RNA. Nevertheless, knockout of Ifit1 promoted viral replication in murine norovirus infected cells. We then demonstrate that Ifit1 promoted interferon-beta expression following transfection of synthetic double-stranded RNA but had little effect on toll-like receptor 3 and 4 signalling. Conclusions: Ifit1 is an antiviral factor during norovirus infection but cannot directly inhibit viral translation. Instead, Ifit1 stimulates the antiviral state following cytoplasmic RNA sensing, contributing to restriction of norovirus replication.

11.
Nat Microbiol ; 4(2): 280-292, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30478287

RESUMO

Enteroviruses comprise a large group of mammalian pathogens that includes poliovirus. Pathology in humans ranges from sub-clinical to acute flaccid paralysis, myocarditis and meningitis. Until now, all of the enteroviral proteins were thought to derive from the proteolytic processing of a polyprotein encoded in a single open reading frame. Here we report that many enterovirus genomes also harbour an upstream open reading frame (uORF) that is subject to strong purifying selection. Using echovirus 7 and poliovirus 1, we confirmed the expression of uORF protein in infected cells. Through ribosome profiling (a technique for the global footprinting of translating ribosomes), we also demonstrated translation of the uORF in representative members of the predominant human enterovirus species, namely Enterovirus A, B and C. In differentiated human intestinal organoids, uORF protein-knockout echoviruses are attenuated compared to the wild-type at late stages of infection where membrane-associated uORF protein facilitates virus release. Thus, we have identified a previously unknown enterovirus protein that facilitates virus growth in gut epithelial cells-the site of initial viral invasion into susceptible hosts. These findings overturn the 50-year-old dogma that enteroviruses use a single-polyprotein gene expression strategy and have important implications for the understanding of enterovirus pathogenesis.


Assuntos
Infecções por Enterovirus/virologia , Enterovirus/genética , Enterovirus/patogenicidade , Mucosa Intestinal/virologia , Fases de Leitura Aberta/fisiologia , Proteínas Virais/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Enterovirus/classificação , Expressão Gênica , Técnicas de Inativação de Genes , Genoma Viral/genética , Humanos , Mutação , Fases de Leitura Aberta/genética , Organoides/virologia , Filogenia , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Seleção Genética , Proteínas Virais/genética , Liberação de Vírus
12.
Wellcome Open Res ; 3: 42, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900416

RESUMO

Background: Due to their role in fine-tuning cellular protein expression, microRNAs both promote viral replication and contribute to antiviral responses, for a range of viruses. The interactions between norovirus and the microRNA machinery have not yet been studied. Here, we investigated the changes that occur in microRNA expression during murine norovirus (MNV) infection. Methods: Using RT-qPCR-based arrays, we analysed changes in miRNA expression during infection with the acute strain MNV-1 in two permissive cell lines, a murine macrophage cell line, RAW264.7, and a murine microglial cell line, BV-2. By RT-qPCR, we further confirmed and analysed the changes in miR-155 expression in the infected cell lines, bone-marrow derived macrophage, and tissues harvested from mice infected with the persistent strain MNV-3. Using miR-155 knockout (KO) mice, we investigated whether loss of miR-155 affected viral replication and pathogenesis during persistent MNV-3 infection in vivo and monitored development of a serum IgG response by ELISA. Results: We identified cell-specific panels of miRNAs whose expression were increased or decreased during infection. Only two miRNAs, miR-687 and miR-155, were induced in both cell lines. miR-155, implicated in innate immunity, was also upregulated in bone-marrow derived macrophage and infected tissues. MNV-3 established a persistent infection in miR-155 knockout (KO) mice, with comparable levels of secreted virus and tissue replication observed as for wildtype mice. However, serum anti-MNV IgG levels were significantly reduced in miR-155 KO mice compared to wildtype mice. Conclusions: We have identified a panel of miRNAs whose expression changes with MNV infection. miR-155 induction is a marker of MNV infection in vitro and in vivo, however it does not contribute to the control of persistent infections in vivo. This finding suggests that the immune defects associated with miR-155 deletion, such as lower serum IgG levels, are also not important for control of persistent MNV-3 infection.

13.
J Gen Virol ; 99(12): 1621-1632, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29683421

RESUMO

Until recently, our understanding of the cellular tropism of human norovirus (HuNoV), a major cause of viral gastroenteritis, has been limited. Immune cells and intestinal epithelial cells (IECs) have been proposed as targets of HuNoV replication in vivo, although the contribution of each to pathogenesis and transmission is unknown. Murine norovirus (MNV) is widely used as a surrogate model for HuNoV, as it replicates in cultured immune cells. The importance of the complete MNV immune cell tropism in vivo has not been determined. Recent work has linked replication in IECs to viral persistence in vivo. MNV provides a model to assess the relative contribution of each cell tropism to viral replication in immunocompetent native hosts. Here we exploited cell-specific microRNAs to control MNV replication, through insertion of microRNA target sequences into the MNV genome. We demonstrated the utility of this approach for MNV in vitro by selectively reducing replication in microglial cells, using microglial-specific miR-467c. We then showed that inserting a target sequence for the haematopoietic-specific miR-142-3p abrogated replication in a macrophage cell line. The presence of a target sequence for either miR-142-3p or IEC miR-215 significantly reduced viral secretion during the early stages of a persistent infection in immunocompetent mice, confirming that both cell types support viral replication in vivo. This study provides additional evidence that MNV shares the IEC tropism of HuNoVs in vivo, and now provides a model to dissect the contribution of replication in each cell type to viral pathogenesis and transmission in a native host.


Assuntos
Infecções por Caliciviridae/virologia , Células Epiteliais/virologia , Macrófagos/virologia , Norovirus/crescimento & desenvolvimento , Doenças dos Roedores/virologia , Tropismo Viral , Replicação Viral , Animais , Antivirais/metabolismo , Linhagem Celular , Transmissão de Doença Infecciosa , Camundongos , MicroRNAs/metabolismo
14.
PeerJ ; 4: e2134, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375966

RESUMO

Members of the Caliciviridae family of positive sense RNA viruses cause a wide range of diseases in both humans and animals. The detailed characterization of the calicivirus life cycle had been hampered due to the lack of robust cell culture systems and experimental tools for many of the members of the family. However, a number of caliciviruses replicate efficiently in cell culture and have robust reverse genetics systems available, most notably feline calicivirus (FCV) and murine norovirus (MNV). These are therefore widely used as representative members with which to examine the mechanistic details of calicivirus genome translation and replication. The replication of the calicivirus RNA genome occurs via a double-stranded RNA intermediate that is then used as a template for the production of new positive sense viral RNA, which is covalently linked to the virus-encoded protein VPg. The covalent linkage to VPg occurs during genome replication via the nucleotidylylation activity of the viral RNA-dependent RNA polymerase. Using FCV and MNV, we used mass spectrometry-based approach to identify the specific amino acid linked to the 5' end of the viral nucleic acid. We observed that both VPg proteins are covalently linked to guanosine diphosphate (GDP) moieties via tyrosine positions 24 and 26 for FCV and MNV respectively. These data fit with previous observations indicating that mutations introduced into these specific amino acids are deleterious for viral replication and fail to produce infectious virus. In addition, we also detected serine phosphorylation sites within the FCV VPg protein with positions 80 and 107 found consistently phosphorylated on VPg-linked viral RNA isolated from infected cells. This work provides the first direct experimental characterization of the linkage of infectious calicivirus viral RNA to the VPg protein and highlights that post-translational modifications of VPg may also occur during the viral life cycle.

15.
J Virol ; 90(10): 5200-5204, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26937032

RESUMO

The eukaryotic initiation factor 4A (eIF4A) is a DEAD box helicase that unwinds RNA structure in the 5' untranslated region (UTR) of mRNAs. Here, we investigated the role of eIF4A in porcine sapovirus VPg-dependent translation. Using inhibitors and dominant-negative mutants, we found that eIF4A is required for viral translation and infectivity, suggesting that despite the presence of a very short 5' UTR, eIF4A is required to unwind RNA structure in the sapovirus genome to facilitate virus translation.


Assuntos
Fator de Iniciação 4A em Eucariotos/metabolismo , Genoma Viral , Sapovirus/genética , Proteínas Virais/biossíntese , Regiões 5' não Traduzidas , Animais , Fator de Iniciação 4A em Eucariotos/genética , Mutação , Ligação Proteica , RNA Viral/metabolismo , Coelhos , Reticulócitos/metabolismo , Sapovirus/fisiologia , Esteróis/farmacologia , Suínos , Proteínas Virais/genética , Replicação Viral
17.
PLoS Pathog ; 12(1): e1005379, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26734730

RESUMO

Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5´ m7G cap nor an internal ribosome entry site (IRES), adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5´-end of the viral RNA and eukaryotic initiation factors (eIFs) in the host cell. For murine norovirus (MNV) we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652-1132). Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC) to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy.


Assuntos
Fator de Iniciação Eucariótico 4G/metabolismo , Norovirus/fisiologia , Iniciação Traducional da Cadeia Peptídica/fisiologia , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Animais , Calorimetria , Linhagem Celular , Cromatografia em Gel , Imunoprecipitação , Espectroscopia de Ressonância Magnética , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína
18.
J Virol ; 89(2): 1218-29, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392209

RESUMO

UNLABELLED: All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3' of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter. IMPORTANCE: Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase.


Assuntos
Norovirus/genética , Norovirus/fisiologia , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Viral/biossíntese , RNA Viral/química , Replicação Viral , Animais , Linhagem Celular , Macrófagos/virologia , Camundongos , Viabilidade Microbiana , RNA Polimerase Dependente de RNA/metabolismo
19.
J Virol ; 88(21): 12213-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142584

RESUMO

UNLABELLED: Sapoviruses of the Caliciviridae family of small RNA viruses are emerging pathogens that cause gastroenteritis in humans and animals. Molecular studies on human sapovirus have been hampered due to the lack of a cell culture system. In contrast, porcine sapovirus (PSaV) can be grown in cell culture, making it a suitable model for understanding the infectious cycle of sapoviruses and the related enteric caliciviruses. Caliciviruses are known to use a novel mechanism of protein synthesis that relies on the interaction of cellular translation initiation factors with the virus genome-encoded viral protein genome (VPg) protein, which is covalently linked to the 5' end of the viral genome. Using PSaV as a representative member of the Sapovirus genus, we characterized the role of the viral VPg protein in sapovirus translation. As observed for other caliciviruses, the PSaV genome was found to be covalently linked to VPg, and this linkage was required for the translation and the infectivity of viral RNA. The PSaV VPg protein was associated with the 4F subunit of the eukaryotic translation initiation factor (eIF4F) complex in infected cells and bound directly to the eIF4E protein. As has been previously demonstrated for feline calicivirus, a member of the Vesivirus genus, PSaV translation required eIF4E and the interaction between eIF4E and eIF4G. Overall, our study provides new insights into the novel mechanism of sapovirus translation, suggesting that sapovirus VPg can hijack the cellular translation initiation mechanism by recruiting the eIF4F complex through a direct eIF4E interaction. IMPORTANCE: Sapoviruses, which are members of the Caliciviridae family, are one of the causative agents of viral gastroenteritis in humans. However, human sapovirus remains noncultivable in cell culture, hampering the ability to characterize the virus infectious cycle. Here, we show that the VPg protein from porcine sapovirus, the only cultivatable sapovirus, is essential for viral translation and functions via a direct interaction with the cellular translation initiation factor eIF4E. This work provides new insights into the novel protein-primed mechanism of calicivirus VPg-dependent translation initiation.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Interações Hospedeiro-Patógeno , Biossíntese de Proteínas , Sapovirus/fisiologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Ligação Proteica , Suínos
20.
J Biol Chem ; 289(31): 21738-50, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24928504

RESUMO

Viruses have evolved a variety of mechanisms to usurp the host cell translation machinery to enable translation of the viral genome in the presence of high levels of cellular mRNAs. Noroviruses, a major cause of gastroenteritis in man, have evolved a mechanism that relies on the interaction of translation initiation factors with the virus-encoded VPg protein covalently linked to the 5' end of the viral RNA. To further characterize this novel mechanism of translation initiation, we have used proteomics to identify the components of the norovirus translation initiation factor complex. This approach revealed that VPg binds directly to the eIF4F complex, with a high affinity interaction occurring between VPg and eIF4G. Mutational analyses indicated that the C-terminal region of VPg is important for the VPg-eIF4G interaction; viruses with mutations that alter or disrupt this interaction are debilitated or non-viable. Our results shed new light on the unusual mechanisms of protein-directed translation initiation.


Assuntos
Fator de Iniciação Eucariótico 4G/metabolismo , Genoma Viral , Norovirus/genética , Biossíntese de Proteínas , Proteínas Virais/fisiologia , Sequência de Bases , Cromatografia de Afinidade , Primers do DNA , Reação em Cadeia da Polimerase , Ligação Proteica , Proteômica , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...