Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38436446

RESUMO

Many applications involving plasma-liquid interactions depend on the reactive processes occurring at the plasma-liquid interface. We report on a falling liquid film plasma reactor allowing for in situ optical absorption measurements of the time-dependence of the ferricyanide/ferrocyanide redox reactivity, complemented with ex situ measurement of the decomposition of formate. We found excellent agreement between the measured decomposition percentages and the diffusion-limited decomposition of formate by interfacial plasma-enabled reactions, except at high pH in thin liquid films, indicating the involvement of previously unexplored plasma-induced liquid phase chemistry enabled by long-lived reactive species. We also determined that high pH facilitates a reduction-favoring environment in ferricyanide/ferrocyanide redox solutions. In situ conversion measurements of a 1:1 ferricyanide/ferrocyanide redox mixture exceed the measured ex situ conversion and show that conversion of a 1:1 ferricyanide/ferrocyanide mixture is strongly dependent on film thickness. We identified three dominant processes: reduction faster than ms time scales for film thicknesses >100 µm, •OH-driven oxidation on time scales of <10 ms, and reduction on 15 ms time scales for film thickness <100 µm. We attribute the slow reduction and larger formate decomposition at high pH to HO2- formed from plasma-produced H2O2 enabled by the high pH at the plasma-liquid interface as confirmed experimentally and by computed reaction rates of HO2- with ferricyanide. Overall, this work demonstrates the utility of liquid film reactors in enabling the discovery of new plasma-interfacial chemistry and the utility of atmospheric plasmas for electrodeless electrochemistry.

2.
Inorg Chem ; 62(47): 19238-19247, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37956394

RESUMO

While niobium and tantalum are found together in their mineral ores, their respective applications in technology require chemical separation. Nb/Ta separations are challenging due to the similar reactivities displayed by these metals in the solution phase. Coordination complexes of these metals have been studied in the contexts of catalysis, small-molecule activation, and functional group insertion reactivity; relatively few studies exist directly comparing the properties of isostructural Nb/Ta complexes. Such comparisons advance the development of Nb/Ta separation chemistry through the potential for differential reactivity. Here, we explore fundamental physicochemical properties in extensively characterized Nb/Ta coordination complexes [Na(DME)3][MClamp], (Clamp6- = tris-(2-(3',5'-di-tert-butyl-2'-oxyphenyl)amidophenyl)amine; M = Nb, Ta) to advance the understanding of the different electronic, optical, and excited-state properties that these metals exhibit in pi-loaded coordination complexes.

3.
J Phys Chem Lett ; 14(44): 9960-9968, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37903417

RESUMO

Low-temperature plasmas in and in contact with liquids have emerged as a catalyst-free approach for the selective, electrode-free, and green synthesis of novel materials. For the synthesis of nanomaterials, short-lived solvated electrons have been proposed to be the critical reducing species, while the role of ultraviolet (UV) photons from plasma is less explored. Here, we demonstrate that UV radiation contributes ∼70% of the integral plasma effect in synthesizing silver (Ag) nanoparticles within a glycerol solution. We suggest that the UV radiation causes C-H bond cleavage of the glycerol molecules, with an experimentally and theoretically determined threshold photon energy of only 5 eV. The photon-induced dissociation leads to the formation of glycerol fragmentation radicals, causing the reduction of Ag+ ions to Ag neutrals, enabling nanoparticle formation in the liquid phase.

4.
Chem Sci ; 13(23): 6796-6805, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35774165

RESUMO

The separation and purification of niobium and tantalum, which co-occur in natural sources, is difficult due to their similar physical and chemical properties. The current industrial method for separating Ta/Nb mixtures uses an energy-intensive process with caustic and toxic conditions. It is of interest to develop alternative, fundamental methodologies for the purification of these technologically important metals that improve upon their environmental impact. Herein, we introduce new Ta/Nb imido compounds: M( t BuN)(TriNOx) (1-M) bound by the TriNOx3- ligand and demonstrate a fundamental, proof-of-concept Ta/Nb separation based on differences in the imido reactivities. Despite the nearly identical structures of 1-M, density functional theory (DFT)-computed electronic structures of 1-M indicate enhanced basic character of the imido group in 1-Ta as compared to 1-Nb. Accordingly, the rate of CO2 insertion into the M[double bond, length as m-dash]Nimido bond of 1-Ta to form a carbamate complex (2-Ta) was selective compared to the analogous, unobserved reaction with 1-Nb. Differences in solubility between the imido and carbamate complexes allowed for separation of the carbamate complex, and led to an efficient Ta/Nb separation (S Ta/Nb = 404 ± 150) dependent on the kinetic differences in nucleophilicities between the imido moieties in 1-Ta and 1-Nb.

5.
Sci Adv ; 8(19): eabm7193, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35544567

RESUMO

Although proteins are considered as nonconductors that transfer electrons only up to 1 to 2 nanometers via tunneling, Geobacter sulfurreducens transports respiratory electrons over micrometers, to insoluble acceptors or syntrophic partner cells, via nanowires composed of polymerized cytochrome OmcS. However, the mechanism enabling this long-range conduction is unclear. Here, we demonstrate that individual nanowires exhibit theoretically predicted hopping conductance, at rate (>1010 s-1) comparable to synthetic molecular wires, with negligible carrier loss over micrometers. Unexpectedly, nanowires show a 300-fold increase in their intrinsic conductance upon cooling, which vanishes upon deuteration. Computations show that cooling causes a massive rearrangement of hydrogen bonding networks in nanowires. Cooling makes hemes more planar, as revealed by Raman spectroscopy and simulations, and lowers their reduction potential. We find that the protein surrounding the hemes acts as a temperature-sensitive switch that controls charge transport by sensing environmental perturbations. Rational engineering of heme environments could enable systematic tuning of extracellular respiration.

6.
Inorg Chem ; 61(1): 23-27, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34928141

RESUMO

The critical metals niobium (Nb) and tantalum (Ta) coexist in mineral sources, requiring a separation step to purify the elements from one another. The industrial separation process by solvent extraction uses stoichiometric hydrofluoric acid to manifest differences in the speciation of these otherwise chemically similar elements. The identification of alternative methods to separate Nb/Ta is desirable for fluoride waste reduction. In pursuit of this goal, the novel complexes [Na(CH3CN)3(Et2O)][M((S)-BINOLate)3] [M = Nb (1-Nb), Ta (1-Ta)] were synthesized and characterized. In electrochemical studies, a reduction event at the potential -2.04 V versus ferrocene/ferrocenium was observed for 1-Nb, whereas 1-Ta exhibited no metal-based waves in the electrochemical window. In addition to the inherent 4d/5d orbital energy differences between Nb/Ta, density functional theory calculations suggest a larger degree of π donation from the ligands to the metal cation in 1-Ta compared to 1-Nb, destabilizing the lowest unoccupied molecular orbital. This phenomenon contributes to a calculated reduction potential difference of ca. 0.75 V, allowing for the selective reduction of 1-Nb and separation of the reduction product through leaching with diethyl ether for a separation factor of 6 ± 2.

7.
Nat Chem Biol ; 16(10): 1136-1142, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32807967

RESUMO

Multifunctional living materials are attractive due to their powerful ability to self-repair and replicate. However, most natural materials lack electronic functionality. Here we show that an electric field, applied to electricity-producing Geobacter sulfurreducens biofilms, stimulates production of cytochrome OmcZ nanowires with 1,000-fold higher conductivity (30 S cm-1) and threefold higher stiffness (1.5 GPa) than the cytochrome OmcS nanowires that are important in natural environments. Using chemical imaging-based multimodal nanospectroscopy, we correlate protein structure with function and observe pH-induced conformational switching to ß-sheets in individual nanowires, which increases their stiffness and conductivity by 100-fold due to enhanced π-stacking of heme groups; this was further confirmed by computational modeling and bulk spectroscopic studies. These nanowires can transduce mechanical and chemical stimuli into electrical signals to perform sensing, synthesis and energy production. These findings of biologically produced, highly conductive protein nanowires may help to guide the development of seamless, bidirectional interfaces between biological and electronic systems.


Assuntos
Proteínas de Bactérias/metabolismo , Estimulação Elétrica , Geobacter/fisiologia , Nanofios/química , Proteínas de Bactérias/genética , Condutividade Elétrica , Fenômenos Eletrofisiológicos
8.
J Am Chem Soc ; 142(22): 10008-10024, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32343561

RESUMO

In supramolecular reaction center models, the lifetime of the charge-separated state depends on many factors. However, little attention has been paid to the redox potential of the species that lie between the donor and acceptor in the final charge separated state. Here, we report on a series of self-assembled aluminum porphyrin-based triads that provide a unique opportunity to study the influence of the porphyrin redox potential independently of other factors. The triads, BTMPA-Im→AlPorFn-Ph-C60 (n = 0, 3, 5), were constructed by linking the fullerene (C60) and bis(3,4,5-trimethoxyphenyl)aniline (BTMPA) to the aluminum(III) porphyrin. The porphyrin (AlPor, AlPorF3, or AlPorF5) redox potentials are tuned by the substitution of phenyl (Ph), 3,4,5-trifluorophenyl (PhF3), or 2,3,4,5,6-pentafluorophenyl (PhF5) groups in its meso positions. The C60 and BTMPA units are bound axially to opposite faces of the porphyrin plane via covalent and coordination bonds, respectively. Excitation of all of the triads results in sequential electron transfer that generates the identical final charge separated state, BTMPA•+-Im→AlPorFn-Ph-C60•-, which lies energetically 1.50 eV above the ground state. Despite the fact that the radical pair is identical in all of the triads, remarkably, the lifetime of the BTMPA•+-Im→AlPorFn-Ph-C60•- radical pair was found to be very different in each of them, that is, 1240, 740, and 56 ns for BTMPA-Im→AlPorF5-Ph-C60, BTMPA-Im→AlPorF3-Ph-C60, and BTMPA-Im→AlPor-Ph-C60, respectively. These results clearly suggest that the charge recombination is an activated process that depends on the midpoint potential of the central aluminum(III) porphyrin (AlPorFn).

9.
Chem Sci ; 11(35): 9593-9603, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34094225

RESUMO

We report the development of photosensitizing arrays based on conductive metal-organic frameworks (MOFs) that enable light harvesting and efficient charge separation. Zn2TTFTB (TTFTB = tetrathiafulvalene tetrabenzoate) MOFs are deposited directly onto TiO2 photoanodes and structurally characterized by pXRD and EXAFS measurements. Photoinduced interfacial charge transfer dynamics are investigated by combining time-resolved THz spectroscopy and quantum dynamics simulations. Sub-600 fs electron injection into TiO2 is observed for Zn2TTFTB-TiO2 and is compared to the corresponding dynamics for TTFTB-TiO2 analogues that lack the extended MOF architecture. Rapid electron injection from the MOF into TiO2 is enhanced by facile migration of the hole away from the interfacial region. Holes migrate through strongly coupled HOMO orbitals localized on the tetrathiafulvalene cores of the columnar stacks of the MOF, whereas electrons are less easily transferred through the spiral staircase arrangement of phenyl substituents of the MOF. The reported findings suggest that conductive MOFs could be exploited as novel photosensitizing arrays in applications to slow, and thereby make difficult, photocatalytic reactions such as those required for water-splitting in artificial photosynthesis.

10.
J Phys Chem Lett ; 10(11): 2657-2662, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31051077

RESUMO

Excited state decay of 2-naphthol (2N) in halocarbon solvents has been observed to be significantly slower when compared to that of 1-naphthol (1N). In this study, we provide new physical insights behind this observation by exploring the regioselective electron transfer (ET) mechanism from photoexcited 1N and 2N to halocarbon solvents at a detailed molecular level. Using state-of-the-art electronic structure calculations, we explore several configurations of naphthol-chloroform complexes and find that the proximity of the electron-accepting chloroform molecule to the electron-rich -OH group of the naphthol is the dominant factor affecting electron transfer rates. The origin of significantly slower electron transfer rates for 2N is traced back to the notably smaller electronic coupling when the electron-accepting chloroform molecule is on top of the aromatic ring distal to the -OH group. Our findings suggest that regioselective photoinduced electron transfer could thus be exploited to control electron transfer in substituted acenes tailored for specific applications.

11.
J Am Chem Soc ; 140(15): 5290-5299, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29589754

RESUMO

We demonstrate that the 10-phenyl-10 H-phenothiazine radical cation (PTZ+•) has a manifold of excited doublet states accessible using visible and near-infrared light that can serve as super-photooxidants with excited-state potentials is excess of +2.1 V vs SCE to power energy demanding oxidation reactions. Photoexcitation of PTZ+• in CH3CN with a 517 nm laser pulse populates a Dn electronically excited doublet state that decays first to the unrelaxed lowest electronic excited state, D1' (τ < 0.3 ps), followed by relaxation to D1 (τ = 10.9 ± 0.4 ps), which finally decays to D0 (τ = 32.3 ± 0.8 ps). D1' can also be populated directly using a lower energy 900 nm laser pulse, which results in a longer D1'→D1 relaxation time (τ = 19 ± 2 ps). To probe the oxidative power of PTZ+• photoexcited doublet states, PTZ+• was covalently linked to each of three hole acceptors, perylene (Per), 9,10-diphenylanthracene (DPA), and 10-phenyl-9-anthracenecarbonitrile (ACN), which have oxidation potentials of 1.04, 1.27, and 1.6 V vs SCE, respectively. In all three cases, photoexcitation wavelength dependent ultrafast hole transfer occurs from Dn, D1', or D1 of PTZ+• to Per, DPA, and ACN. The ability to take advantage of the additional oxidative power provided by the upper excited doublet states of PTZ+• will enable applications using this chromophore as a super-oxidant for energy-demanding reactions.

12.
J Chem Theory Comput ; 14(2): 867-876, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29298059

RESUMO

The 1Lb and 1La excited states of naphthols are characterized by using time-dependent density functional theory (TDDFT), configuration interaction with singles (CIS), and equation-of-motion coupled cluster singles and doubles (EOM-CCSD) methods. TDDFT fails dramatically at predicting the energy and ordering of the 1La and 1Lb excited states as observed experimentally, while EOM-CCSD accurately predicts the excited states as characterized by natural transition orbital analysis. The limitations of TDDFT are attributed to the absence of correlation from doubly excited configurations as well as the inconsistent description of excited electronic states of naphthol photoacids revealed by excitation analysis based on the one-electron transition density matrix.

13.
J Chem Theory Comput ; 13(12): 6000-6009, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29095611

RESUMO

Understanding the effect of vibronic coupling on electron transfer (ET) rates is a challenge common to a wide range of applications, from electrochemical synthesis and catalysis to biochemical reactions and solar energy conversion. The Marcus-Jortner-Levich (MJL) theory offers a model of ET rates based on a simple analytic expression with a few adjustable parameters. However, the MJL equation in conjunction with density functional theory (DFT) has yet to be established as a predictive first-principles methodology. A framework is presented for calculating transfer rates modulated by molecular vibrations, that circumvents the steep computational cost which has previously necessitated approximations such as condensing the vibrational manifold into a single empirical frequency. Our DFT-MJL approach provides robust and accurate predictions of ET rates spanning over 4 orders of magnitude in the 106-1010 s-1 range. We evaluate the full MJL equation with a Monte Carlo sampling of the entire active space of thermally accessible vibrational modes, while using no empirical parameters. The contribution to the rate of individual modes is illustrated, providing insight into the interplay between vibrational degrees of freedom and changes in electronic state. The reported findings are valuable for understanding ET rates modulated by multiple vibrational modes, relevant to a broad range of systems within the chemical sciences.

14.
J Am Chem Soc ; 139(46): 16466-16469, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29083146

RESUMO

Spin-dependent intramolecular electron transfer is revealed in the ReI(CO)3(py)(bpy-Ph)-perylenediimide radical anion (ReI-bpy-PDI-•) dyad, a prototype model system for artificial photosynthesis. Quantum chemical calculations and ultrafast transient absorption spectroscopy experiments demonstrate that selective photoexcitation of ReI-bpy results in electron transfer from PDI-• to ReI-bpy, forming two distinct charge-shifted states. One is an overall doublet whose return to the ground state is spin-allowed. The other, high-spin quartet state, persists for 67 ns due to spin-forbidden back-electron transfer, constituting a more than thousandfold lifetime improvement compared to the low-spin state. Exploiting this spin dependency holds promise for artificial photosynthetic systems requiring long-lived reduced states to perform multi-electron chemistry.

15.
J Am Chem Soc ; 138(34): 10978-85, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27454546

RESUMO

CuO is a nonhazardous, earth-abundant material that has exciting potential for use in solar cells, photocatalysis, and other optoelectronic applications. While progress has been made on the characterization of properties and reactivity of CuO, there remains significant controversy on how to control the precise band gap by tuning conditions of synthetic methods. Here, we combine experimental and theoretical methods to address the origin of the wide distribution of reported band gaps for CuO nanosheets. We establish reaction conditions to control the band gap and reactivity via a high-temperature treatment in an oxygen-rich environment. SEM, TEM, XRD, and BET physisorption reveals little to no change in nanostructure, crystal structure, or surface area. In contrast, UV-vis spectroscopy shows a modulation in the material band gap over a range of 330 meV. A similar trend is found in H2 temperature-programmed reduction where peak H2 consumption temperature decreases with treatment. Calculations of the density of states show that increasing the oxygen to copper coverage ratio of the surface accounts for most of the observed changes in the band gap. An oxygen exchange mechanism, supported by (18)O2 temperature-programmed oxidation, is proposed to be responsible for changes in the CuO nanosheet oxygen to copper stoichiometry. The changes induced by oxygen depletion/deposition serve to explain discrepancies in the band gap of CuO, as reported in the literature, as well as dramatic differences in catalytic performance.

16.
Chem Commun (Camb) ; 52(14): 2972-5, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26781247

RESUMO

Hydroxamate binding modes and protonation states have yet to be conclusively determined. Molecular titanium(iv) phenylhydroxamate complexes were synthesized as structural and spectroscopic models, and compared to functionalized TiO2 nanoparticles. In a combined experimental-theoretical study, we find that the predominant binding form is monodeprotonated, with evidence for the chelate mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...