Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 371: 128617, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640815

RESUMO

The aim of this work was to assess the efficiency of freshwater green microalga, Chlorella sorokiniana for diclofenac sodium (DFS) removal, and metabolic response of alga to comprehend the metabolic pathways involved/affected during DFS decontamination. Results showed 91.51 % removal of DFS could be achieved within 9 days of algal treatment along with recovery of enhanced value-added bioresources i.e. chlorophyll, carotenoids, and lipids from the spent biomass. DFS also had an effect on enzyme activity including superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA). Furthermore, metabolomics profiling provided an in-depth insight into changes in the metabolic response of C. sorokiniana wherein DFS induced 32 metabolites in microalgae compared to unexposed-control. This study offers microalgae as a green option for DFS removal, and the metabolomics study complemented with DFS could be an approach to understand the stress-induced strategies of C. sorokiniana for concomitant value-added products recovery in presence of DFS.


Assuntos
Chlorella , Microalgas , Microalgas/metabolismo , Chlorella/metabolismo , Diclofenaco/metabolismo , Água/metabolismo , Lipídeos , Metabolômica , Biomassa
2.
Environ Res ; 215(Pt 1): 114219, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36057333

RESUMO

With the rapid emergence of various metabolic and multiple-drug-resistant infectious diseases, new pharmaceuticals are continuously being introduced in the market. The excess production and use of pharmaceuticals and their untreated/unmetabolized release in the environment cause the contamination of aquatic ecosystem, and thus, compromise the environment and human-health. The present review provides insights into the classification, sources, occurrence, harmful impacts, and existing technologies to curb these problems. A comprehensive detail of various biological and nanotechnological strategies for the removal of pharmaceutical residues from water is critically discussed focusing on their efficiencies, and current limitations to design improved-technologies for their lab-to-field applications. Furthermore, the review highlights and suggests the scope of integrated bionanotechnological methods for enhanced removal of pharmaceutical residues from water to fulfill the United Nations Sustainable Development Goal (UN-SDG) for providing clean potable water for all.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Ecossistema , Humanos , Preparações Farmacêuticas , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos
3.
Tree Physiol ; 38(5): 772-784, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29281116

RESUMO

FLOWERING LOCUS T (FT) and TERMINAL FLOWER1/CENTRORADIALIS (TFL1/CEN) are the key regulators of flowering time in plants with FT promoting flowering and TFL1 repressing flowering. TFL1 also controls floral meristem identity and its maintenance. In this study we have characterized two pomegranate (Punica granatum L.) TFL1/CEN-like genes designated as PgTFL1 and PgCENa. The expression of PgTFL1 and PgCENa fluctuated through alternate pruning and flowering cycles, being highly expressed during the vegetative phase (immediately after pruning) and decreasing gradually in the months thereafter such that their lowest levels, especially for PgCENa coincided with the flowering phase. Both the genes are able to functionally suppress the Arabidopsis tfl1-14 mutant flowering defect. Their expression in Arabidopsis resulted in delayed flowering time, increased plant height and leaf number, branches and shoot buds as compared with wild type, suggesting that PgTFL1 and PgCENa are bonafide homologs of TFL1. However, both the genes show distinct expression patterns, being expressed differentially in vegetative shoot apex and floral bud samples. While PgTFL1 expression was low in vegetative shoot apex and high in flower bud, PgCENa expression showed the opposite trend. These results suggest that the two TFL1s in pomegranate may be utilized to control distinct developmental processes, namely repression of flowering by PgCENa and development and growth of the reproductive tissues by PgTFL1 via distinct temporal and developmental regulation of their expression.


Assuntos
Flores/genética , Lythraceae/crescimento & desenvolvimento , Lythraceae/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Flores/crescimento & desenvolvimento , Lythraceae/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
4.
3 Biotech ; 7(5): 352, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29062673

RESUMO

Mango fruit tocopherol levels vary in different varieties during ripening. This study shows that tocopherol accumulation is highly correlated with its p-hydroxyphenyl pyruvate dioxygenase (MiHPPD) gene expression during ripening. MiHPPD transcript is ethylene induced and differentially expressed in four mango varieties used in this study. Higher/lower accumulation of tocopherol (mainly α-tocopherol) was achieved by heterologous expression of MiHPPD in Arabidopsis and tomato. The results suggest that tocopherol accumulation in mango fruit is correlated to MiHPPD gene expression. Over-expression of MiHPPD gene channelizes the flux towards tocophreol biosynthesis and could be used as a potential tool for metabolic engineering.

5.
Sci Rep ; 7(1): 5935, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724905

RESUMO

Banana is an important day neutral food crop with a long flowering/fruiting cycle that is affected by hot summers or cold winters in different places. Manipulating its life cycle requires an understanding of its flowering time machinery to bypass these stresses. Twelve FLOWERING LOCUS T (FT) and two TWIN SISTER OF FT (TSF) members were isolated from banana and their organization and expression pattern studied during development in two varieties that differ in flowering time namely Grand Nain (AAA genotype) and Hill banana (AAB genotype). The expression of at least 3 genes namely MaFT1, MaFT2 and MaFT5 (and to some extent MaFT7) increases just prior to initiation of flowering. These four genes and five others (MaFT3, MaFT4, MaFT8, MaFT12 and MaTSF1 could suppress the delayed flowering defect in the Arabidopsis ft-10 mutant and induce early flowering upon over-expression in the Col-0 ecotype. Most genes are diurnally regulated and differentially expressed during development and in various vegetative and reproductive tissues suggesting roles besides flowering. Subtle amino acid changes in these FT/TSF-like proteins provide interesting insights into the structure/function relationships of banana FTs vis-à-vis Arabidopsis. The studies provide a means for manipulation of flowering in banana for better management of resources and to reduce losses through abiotic stresses.


Assuntos
Flores/fisiologia , Musa/metabolismo , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Cromossomos de Plantas/genética , Ritmo Circadiano/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Musa/genética , Mutação/genética , Especificidade de Órgãos , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
6.
Sci Rep ; 6: 33662, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27670157

RESUMO

Antibiotic resistant bacteria not only affect human health and but also threatens the safety in hospitals and among communities. However, the emergence of drug resistant bacteria is inevitable due to evolutionary selection as a consequence of indiscriminate antibiotic usage. Therefore, it is necessary to develop a novel strategy by which pathogenic bacteria can be eliminated without triggering resistance. We propose a novel magnetic nanoparticle-based physical treatment against pathogenic bacteria, which blocks biofilm formation and kills bacteria. In this approach, multiple drug resistant Staphylococcus aureus USA300 and uropathogenic Escherichia coli CFT073 are trapped to the positively charged magnetic core-shell nanoparticles (MCSNPs) by electrostatic interaction. All the trapped bacteria can be completely killed within 30 min owing to the loss of membrane potential and dysfunction of membrane-associated complexes when exposed to the radiofrequency current. These results indicate that MCSNP-based physical treatment can be an alternative antibacterial strategy without leading to antibiotic resistance, and can be used for many purposes including environmental and therapeutic applications.

7.
J Hazard Mater ; 306: 386-394, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26826964

RESUMO

The genotoxic and carcinogenic effects of diazo dyes from industrial effluents pose a serious environmental threat by contaminating aquatic ecosystem and consequently impact human health. The potential of a diazo dye resistant, self-sustainable photosynthetic green alga Chlorella pyrenoidosa NCIM 2738 provides a viable green technology for an efficient biodegradation of diazo dye Direct Red-31 (DR-31) and overall improvement of water quality. Herein, we for the first time report the degradation of DR-31 using C. pyrenoidosa. Batch experiments were performed to optimize the effect of initial pH, contact time and toxicity-range of DR-31 in order to achieve the optimal conditions for maximum decolourization in continuous cyclic photobioreactor. In batch culture, C. pyrenoidosa exhibited 96% decolourization with 40mgL(-1) dye at pH3. The equilibrium was attained within 30min and the maximum uptake of 30.53mgg(-1) algal biomass was observed during this period. This was found to be fitted well with Langmuir and Freundlich adsorption isotherm. The FT-IR spectra showed a change from -N=N- to N-H suggesting the possible involvement of the azoreductase enzyme. The application of C. pyrenoidosa not only degraded the DR-31 but also improved the quality of water by reducing COD (82.73%), BOD (56.44%), sulphate (54.54%), phosphate (19.88%), and TDS (84.18%) which was further enhanced in continuous cyclic bioreactor treatment. The results clearly showed that C. pyrenoidosa provides an efficient, self-sustainable green technology for decolourization of DR-31 and improved the water quality.


Assuntos
Compostos Azo/metabolismo , Chlorella/metabolismo , Corantes/metabolismo , Poluentes Químicos da Água/metabolismo , Análise da Demanda Biológica de Oxigênio , Chlorella/crescimento & desenvolvimento , Resíduos Industriais , Luz , Fosfatos/análise , Fotobiorreatores , Sulfatos/análise , Eliminação de Resíduos Líquidos , Purificação da Água , Qualidade da Água
8.
ISME J ; 9(2): 333-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25083935

RESUMO

Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site.


Assuntos
Bacteriófagos/genética , Geobacter/virologia , Água Subterrânea/virologia , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Bacteriófagos/isolamento & purificação , Biodegradação Ambiental , Genes Virais , Geobacter/genética , Geobacter/isolamento & purificação , Água Subterrânea/microbiologia , Metagenoma , Proteômica , Transcriptoma , Proteínas Virais/genética
9.
Front Microbiol ; 5: 245, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904558

RESUMO

Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III) as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further studied. Strains were constructed in which one of the remaining six genes was deleted. The strain in which the monocistronic gene Gmet 0232 was deleted metabolized phenol, but not benzene. Transcript abundance of the adjacent monocistronic gene, Gmet 0231, predicted to encode a zinc-containing oxidoreductase, was elevated in cells metabolizing benzene, although not at a statistically significant level. However, deleting Gmet 0231 also yielded a strain that could metabolize phenol, but not benzene. Although homologs of Gmet 0231 and Gmet 0232 are found in microorganisms not known to anaerobically metabolize benzene, the adjacent localization of these genes is unique to G. metallireducens. The discovery of genes that are specifically required for the metabolism of benzene, but not phenol in G. metallireducens is an important step in potentially identifying the mechanisms for anaerobic benzene activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...