Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(11): 2110-2119, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857700

RESUMO

Composites in a wide concentration range of 0-0.6 wt% based on a nematic liquid crystal mixture and CdS quantum dots doped with manganese ions (Mn 6%) are presented. The effect of the CdS:Mn quantum dots on the phase diagram and electronic structure of composites was studied using differential scanning calorimetry and fluorescence analysis. Nonmonotonic concentration-dependent changes in the clearing point, which correlate with the fluorescence quenching behavior of the main CdS:Mn peak, were found. Dielectric spectroscopy and electro-optic studies revealed a corresponding increase in the dielectric permittivity anisotropy and birefringence in the 0.2-0.4 wt% range, where thermodynamic changes occur. The initiating factors behind this effect are supposed to be the self-assembly of quantum dots, and the distortion of the orientation order of liquid crystal molecules at a higher mass concentration of quantum dots.

2.
Materials (Basel) ; 15(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35057245

RESUMO

Microbial antibiotic resistance is an important global world health problem. Recently, an interest in nanoparticles (NPs) of silver oxides as compounds with antibacterial potential has significantly increased. From a practical point of view, composites of silver oxide NPs and biocompatible material are of interest. A borosiloxane (BS) can be used as one such material. A composite material combining BS and silver oxide NPs has been synthesized. Composites containing BS have adjustable viscoelastic properties. The silver oxide NPs synthesized by laser ablation have a size of ~65 nm (half-width 60 nm) and an elemental composition of Ag2O. The synthesized material exhibits strong bacteriostatic properties against E. coli at a concentration of nanoparticles of silver oxide more than 0.01%. The bacteriostatic effect depends on the silver oxide NPs concentration in the matrix. The BS/silver oxide NPs have no cytotoxic effect on a eukaryotic cell culture when the concentration of nanoparticles of silver oxide is less than 0.1%. The use of the resulting composite based on BS and silver oxide NPs as a reusable dry disinfectant is due to its low toxicity and bacteriostatic activity and its characteristics are not inferior to the medical alloy nitinol.

3.
Materials (Basel) ; 14(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34832317

RESUMO

A method for obtaining a stable colloidal solution of silver oxide nanoparticles has been developed using laser ablation. The method allows one to obtain nanoparticles with a monomodal size distribution and a concentration of more than 108 nanoparticles per mL. On the basis of the obtained nanoparticles and the PLGA polymer, a nanocomposite material was manufactured. The manufacturing technology allows one to obtain a nanocomposite material without significant defects. Nanoparticles are not evenly distributed in the material and form domains in the composite. Reactive oxygen species (hydrogen peroxide and hydroxyl radical) are intensively generated on the surfaces of the nanocomposite. Additionally, on the surface of the composite material, an intensive formation of protein long-lived active forms is observed. The ELISA method was used to demonstrate the generation of 8-oxoguanine in DNA on the developed nanocomposite material. It was found that the multiplication of microorganisms on the developed nanocomposite material is significantly decreased. At the same time, the nanocomposite does not inhibit proliferation of mammalian cells. The developed nanocomposite material can be used as an affordable and non-toxic nanomaterial to create bacteriostatic coatings that are safe for humans.

4.
Nanomaterials (Basel) ; 11(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835569

RESUMO

A technology for producing a nanocomposite based on the borsiloxane polymer and chemically unmodified fullerenes has been developed. Nanocomposites containing 0.001, 0.01, and 0.1 wt% fullerene molecules have been created. It has been shown that the nanocomposite with any content of fullerene molecules did not lose the main rheological properties of borsiloxane and is capable of structural self-healing. The resulting nanomaterial is capable of generating reactive oxygen species (ROS) such as hydrogen peroxide and hydroxyl radicals in light. The rate of ROS generation increases with an increase in the concentration of fullerene molecules. In the absence of light, the nanocomposite exhibits antioxidant properties. The severity of antioxidant properties is also associated with the concentration of fullerene molecules in the polymer. It has been shown that the nanocomposite upon exposure to visible light leads to the formation of long-lived reactive protein species, and is also the reason for the appearance of such a key biomarker of oxidative stress as 8-oxoguanine in DNA. The intensity of the process increases with an increase in the concentration of fullerene molecules. In the dark, the polymer exhibits weak protective properties. It was found that under the action of light, the nanocomposite exhibits significant bacteriostatic properties, and the severity of these properties depends on the concentration of fullerene molecules. Moreover, it was found that bacterial cells adhere to the surfaces of the nanocomposite, and the nanocomposite can detach bacterial cells not only from the surfaces, but also from wetted substrates. The ability to capture bacterial cells is primarily associated with the properties of the polymer; they are weakly affected by both visible light and fullerene molecules. The nanocomposite is non-toxic to eukaryotic cells, the surface of the nanocomposite is suitable for eukaryotic cells for colonization. Due to the combination of self-healing properties, low cytotoxicity, and the presence of bacteriostatic properties, the nanocomposite can be used as a reusable dry disinfectant, as well as a material used in prosthetics.

5.
Materials (Basel) ; 14(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34771805

RESUMO

The present study a comprehensive analysis of the antibacterial properties of a composite material based on borosiloxane and zinc oxide nanoparticles (ZnO NPs). The effect of the polymer matrix and ZnO NPs on the generation of reactive oxygen species, hydroxyl radicals, and long-lived oxidized forms of biomolecules has been studied. All variants of the composites significantly inhibited the division of E. coli bacteria and caused them to detach from the substrate. It was revealed that the surfaces of a composite material based on borosiloxane and ZnO NPs do not inhibit the growth and division of mammalians cells. It is shown in the work that the positive effect of the incorporation of ZnO NPs into borosiloxane can reach 100% or more, provided that the viscoelastic properties of borosiloxane with nanoparticles are retained.

6.
Appl Opt ; 59(27): 8443-8449, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32976430

RESUMO

Diffraction optical elements (DOE) are important elements of systems for images displaying and processing. The DOE materials with both positive and negative birefringence enhance performances and functionality of such systems. We have calculated the diffraction of rays passing through optically anisotropic grating with surface microrelief by using our original Exedeep software. At the first time the diffraction parameters for both transmitted and reflected TE- and TM-waves are calculated for materials with both positive and negative optical anisotropy. The simulation results are to be used to create DOE for the visible, UV, IR and THz ranges.

7.
Appl Opt ; 53(29): H51-7, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25322431

RESUMO

The phase retardation difference, ΔΦ, is calculated for hybrid liquid crystal (LC) cells as a function of LC pretilt angles, θ0(1), θ0(2), on the opposite substrates of the cell for the case of an arbitrary angle of light incidence in the range from 0 to 90°. An LC director configuration is suggested for its application in optical compensators. Design and fabrication methods of hybrid aligned nematic (HAN) cells with an arbitrary LC pretilt angle are described. The LC pretilt angle is measured in the HAN cells with a given planar or vertical LC alignment on one of the substrates.

8.
Appl Opt ; 52(13): 3012-9, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23669767

RESUMO

Optical and electro-optical methods of liquid crystal (LC) director pretilt angle measurement are described for LC cells with homogeneous and inhomogeneous LC director distribution. The LC pretilt on both LC substrates can have the same or opposite direction. The phase retardation difference of both extraordinary and ordinary polarized rays passing through an LC cell with homogeneous and inhomogeneous LC director distribution has been calculated versus the LC pretilt angle θ(0) on the cell's substrates in the range 0≤θ(0)≤90°. The experimental procedure for phase retardation difference determination by measurement of the LC cell transmission between crossed polarizers for cells with LC tilted alignment is described. The method developed can also be used in optical compensator design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...