Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38257880

RESUMO

Due to their two-cell membranes, Gram-negative bacteria are particularly resistant to antibiotics. Recent investigations aimed at exploring new target proteins involved in Gram-negative bacteria adaptation helped to identify environmental changes encountered during infection. One of the most promising approaches in finding novel targets for antibacterial drugs consists of blocking noncoding RNA-based regulation using the protein cofactor, Hfq. Although Hfq is important in many bacterial pathogens, its involvement in antibiotics response is still unclear. Indeed, Hfq may mediate drug resistance by regulating the major efflux system in Escherichia coli, but it could also play a role in the influx of antibiotics. Here, using an imaging approach, we addressed this problem quantitatively at the single-cell level. More precisely, we analyzed how Hfq affects the dynamic influx and efflux of ciprofloxacin, an antibiotic from the group of fluoroquinolones that is used to treat bacterial infections. Our results indicated that the absence of either whole Hfq or its C-terminal domain resulted in a more effective accumulation of ciprofloxacin, irrespective of the presence of the functional AcrAB-TolC efflux pump. However, overproduction of the MicF small regulatory RNA, which reduces the efficiency of expression of the ompF gene (coding for a porin involved in antibiotics influx) in a Hfq-dependent manner, resulted in impaired accumulation of ciprofloxacin. These results led us to propose potential mechanisms of action of Hfq in the regulation of fluoroquinolone fluxes across the E. coli envelope.

2.
Commun Biol ; 5(1): 1062, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203030

RESUMO

Sufficient concentration of antibiotics close to their target is key for antimicrobial action. Among the tools exploited by bacteria to reduce the internal concentration of antibiotics, multidrug efflux pumps stand out for their ability to capture and expel many unrelated compounds out of the cell. Determining the specificities and efflux efficiency of these pumps towards their substrates would provide quantitative insights into the development of antibacterial strategies. In this light, we developed a competition efflux assay on whole cells, that allows measuring the efficacy of extrusion of clinically used quinolones in populations and individual bacteria. Experiments reveal the efficient competitive action of some quinolones that restore an active concentration of other fluoroquinolones. Computational methods show how quinolones interact with the multidrug efflux transporter AcrB. Combining experiments and computations unveils a key molecular mechanism acting in vivo to detoxify bacterial cells. The developed assay can be generalized to the study of other efflux pumps.


Assuntos
Proteínas de Escherichia coli , Fluoroquinolonas , Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli/metabolismo , Fluoroquinolonas/farmacologia , Proteínas de Membrana Transportadoras , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química
3.
Bioresour Technol ; 353: 127140, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35405211

RESUMO

This work presents a dynamic view of the enzymatic degradation of maize cell walls, and sheds new light on the recalcitrance of hot water pretreated maize stem internodes. Infra-red microspectrometry, mass spectrometry, fluorescence recovery after photobleaching and fluorescence imaging were combined to investigate enzymatic hydrolysis at the cell scale. Depending on their polymer composition and organisation, cell types exhibits different extent and rate of enzymatic degradation. Enzymes act sequentially from the cell walls rich in accessible cellulose to the most recalcitrant cells. This phenomenon can be linked to the heterogeneous distribution of enzymes in the liquid medium and the adsorption/desorption mechanisms that differ with the type of cell.


Assuntos
Temperatura Alta , Zea mays , Celulose/química , Hidrólise , Lignina/química , Água/química , Zea mays/química
4.
J Exp Bot ; 70(6): 1955-1967, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30916341

RESUMO

Gravity is a major abiotic cue for plant growth. However, little is known about the responses of plants to various patterns of gravi-stimulation, with apparent contradictions being observed between the dose-like responses recorded under transient stimuli in microgravity environments and the responses under steady-state inclinations recorded on earth. Of particular importance is how the gravitropic response of an organ is affected by the temporal dynamics of downstream processes in the signalling pathway, such as statolith motion in statocytes or the redistribution of auxin transporters. Here, we used a combination of experiments on the whole-plant scale and live-cell imaging techniques on wheat coleoptiles in centrifuge devices to investigate both the kinematics of shoot-bending induced by transient inclination, and the motion of the statoliths in response to cell inclination. Unlike previous observations in microgravity, the response of shoots to transient inclinations appears to be independent of the level of gravity, with a response time much longer than the duration of statolith sedimentation. This reveals the existence of a memory process in the gravitropic signalling pathway, independent of statolith dynamics. By combining this memory process with statolith motion, a mathematical model is built that unifies the different laws found in the literature and that predicts the early bending response of shoots to arbitrary gravi-stimulations.


Assuntos
Gravitropismo , Brotos de Planta/fisiologia , Triticum/crescimento & desenvolvimento , Fenômenos Biomecânicos , Cotilédone/crescimento & desenvolvimento , Transdução de Sinais
5.
Sci Rep ; 8(1): 11442, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061667

RESUMO

Gravity is a permanent environmental signal guiding plant growth and development. Gravity sensing in plants starts with the displacement of starch-filled plastids called statoliths, ultimately leading to auxin redistribution and organ curvature. While the involvement in gravity sensing of several actors such as calcium is known, the effect of statolith displacement on calcium changes remains enigmatic. Microgravity is a unique environmental condition offering the opportunity to decipher this link. In this study, roots of Brassica napus were grown aboard the International Space Station (ISS) either in microgravity or in a centrifuge simulating Earth gravity. The impact of short simulated gravity onset and removal was measured on statolith positioning and intracellular free calcium was assessed using pyroantimonate precipitates as cytosolic calcium markers. Our findings show that a ten-minute onset or removal of gravity induces very low statolith displacement, but which is, nevertheless, associated with an increase of the number of pyroantimonate precipitates. These results highlight that a change in the cytosolic calcium distribution is triggered in absence of a significant statolith displacement.


Assuntos
Cálcio/metabolismo , Citoplasma/metabolismo , Gravitação , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Ausência de Peso , Antimônio/farmacologia , Brassica napus/efeitos dos fármacos , Brassica napus/fisiologia , Brassica napus/ultraestrutura , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/ultraestrutura , Plântula/fisiologia , Voo Espacial
6.
Proc Natl Acad Sci U S A ; 115(20): 5123-5128, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712863

RESUMO

Plants are able to sense and respond to minute tilt from the vertical direction of the gravity, which is key to maintain their upright posture during development. However, gravisensing in plants relies on a peculiar sensor made of microsize starch-filled grains (statoliths) that sediment and form tiny granular piles at the bottom of the cell. How such a sensor can detect inclination is unclear, as granular materials like sand are known to display flow threshold and finite avalanche angle due to friction and interparticle jamming. Here, we address this issue by combining direct visualization of statolith avalanches in plant cells and experiments in biomimetic cells made of microfluidic cavities filled with a suspension of heavy Brownian particles. We show that, despite their granular nature, statoliths move and respond to the weakest angle, as a liquid clinometer would do. Comparison between the biological and biomimetic systems reveals that this liquid-like behavior comes from the cell activity, which agitates statoliths with an apparent temperature one order of magnitude larger than actual temperature. Our results shed light on the key role of active fluctuations of statoliths for explaining the remarkable sensitivity of plants to inclination. Our study also provides support to a recent scenario of gravity perception in plants, by bridging the active granular rheology of statoliths at the microscopic level to the macroscopic gravitropic response of the plant.


Assuntos
Biomimética , Gravitropismo , Sensação Gravitacional/fisiologia , Células Vegetais/fisiologia , Fenômenos Fisiológicos Vegetais , Triticum/crescimento & desenvolvimento , Soluções , Triticum/fisiologia
7.
Sci Rep ; 6: 35431, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739470

RESUMO

Gravity perception plays a key role in how plants develop and adapt to environmental changes. However, more than a century after the pioneering work of Darwin, little is known on the sensing mechanism. Using a centrifugal device combined with growth kinematics imaging, we show that shoot gravitropic responses to steady levels of gravity in four representative angiosperm species is independent of gravity intensity. All gravitropic responses tested are dependent only on the angle of inclination from the direction of gravity. We thus demonstrate that shoot gravitropism is stimulated by sensing inclination not gravitational force or acceleration as previously believed. This contrasts with the otolith system in the internal ear of vertebrates and explains the robustness of the control of growth direction by plants despite perturbations like wind shaking. Our results will help retarget the search for the molecular mechanism linking shifting statoliths to signal transduction.


Assuntos
Gravitropismo , Brotos de Planta/fisiologia , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...