Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7062, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923717

RESUMO

Passively administered monoclonal antibodies (mAbs) given before or after viral infection can prevent or blunt disease. Here, we examine the efficacy of aerosol mAb delivery to prevent infection and disease in rhesus macaques inoculated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant via intranasal and intratracheal routes. SARS-CoV-2 human mAbs or a human mAb directed to respiratory syncytial virus (RSV) are nebulized and delivered using positive airflow via facemask to sedated macaques pre- and post-infection. Nebulized human mAbs are detectable in nasal, oropharyngeal, and bronchoalveolar lavage (BAL) samples. SARS-CoV-2 mAb treatment significantly reduces levels of SARS-CoV-2 viral RNA and infectious virus in the upper and lower respiratory tracts relative to controls. Reductions in lung and BAL virus levels correspond to reduced BAL inflammatory cytokines and lung pathology. Aerosolized antibody therapy for SARS-CoV-2 could be effective for reducing viral burden and limiting disease severity.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Macaca mulatta , COVID-19/patologia , Aerossóis e Gotículas Respiratórios , Pulmão/patologia , Anticorpos Antivirais , Replicação Viral , Anticorpos Monoclonais
2.
Sensors (Basel) ; 23(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687829

RESUMO

The accurate, rapid, and specific detection of DNA strands in solution is becoming increasingly important, especially in biomedical applications such as the trace detection of COVID-19 or cancer diagnosis. In this work we present the design, elaboration and characterization of an optofluidic sensor based on a polymer-based microresonator which shows a quick response time, a low detection limit and good sensitivity. The device is composed of a micro-racetrack waveguide vertically coupled to a bus waveguide and embedded within a microfluidic circuit. The spectral response of the microresonator, in air or immersed in deionised water, shows quality factors up to 72,900 and contrasts up to 0.9. The concentration of DNA strands in water is related to the spectral shift of the microresonator transmission function, as measured at the inflection points of resonance peaks in order to optimize the signal-over-noise ratio. After functionalization by a DNA probe strand on the surface of the microresonator, a specific and real time measurement of the complementary DNA strands in the solution is realized. Additionally, we have inferred the dissociation constant value of the binding equilibrium of the two complementary DNA strands and evidenced a sensitivity of 16.0 pm/µM and a detection limit of 121 nM.


Assuntos
COVID-19 , Humanos , DNA Complementar , Meios de Contraste , Polímeros , Água
3.
PLoS Pathog ; 18(7): e1010691, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35862475

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel ß-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human ß-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human ß-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais , COVID-19/terapia , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2 , Redução de Peso
4.
J Zoo Wildl Med ; 53(1): 60-69, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35339150

RESUMO

Aspergillosis remains a difficult disease to diagnose antemortem in many species, especially avian species. In the present study, banked plasma samples from various avian species were examined for gliotoxin (GT), which is a recognized key virulence factor produced during the replication of Aspergillus species hyphae and a secondary metabolite bis(methyl)gliotoxin (bmGT). Initially, liquid chromatography-tandem mass spectrometry methods for detecting GT and bmGT were validated in a controlled model using sera obtained from rats experimentally infected with Aspergillus fumigatus. The minimum detection level for both measurements was determined to be 3 ng/ml, and the assay was found to be accurate and reliable. As proof of concept, GT was detected in 85.7% (30/35) of the samples obtained from birds with confirmed aspergillosis and in 60.7% (17/28) of samples from birds with probable infection but only in one of those from clinically normal birds (1/119). None of the birds were positive for bmGT. Repeated measures from birds under treatment suggests results may have prognostic value. Further studies are needed to implement quantitative methods and to determine the utility of this test in surveillance screening in addition to its use as a diagnostic test in birds with suspected aspergillosis.


Assuntos
Aspergilose , Gliotoxina , Doenças dos Roedores , Animais , Aspergilose/diagnóstico , Aspergilose/veterinária , Aspergillus , Aspergillus fumigatus , Aves , Gliotoxina/metabolismo , Ratos
5.
bioRxiv ; 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35291292

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel ß-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human ß-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human ß-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.

6.
Front Microbiol ; 10: 600, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972049

RESUMO

Aspergillus fumigatus is an airborne opportunistic fungal pathogen responsible for severe infections. Among them, invasive pulmonary aspergillosis has become a major concern as mortality rates exceed 50% in immunocompromised hosts. In parallel, allergic bronchopulmonary aspergillosis frequently encountered in cystic fibrosis patients, is also a comorbidity factor. Current treatments suffer from high toxicity which prevents their use in weakened subjects, resulting in impaired prognostic. Because of their low toxicity and high specificity, anti-infectious therapeutic antibodies could be a new alternative to conventional therapeutics. In this study, we investigated the potential of Chitin Ring Formation cell wall transglycosylases of A. fumigatus to be therapeutic targets for therapeutic antibodies. We demonstrated that the Crf target was highly conserved, regardless of the pathophysiological context; whereas the CRF1 gene was found to be 100% conserved in 92% of the isolates studied, Crf proteins were expressed in 98% of the strains. In addition, we highlighted the role of Crf proteins in fungal growth, using a deletion mutant for CRF1 gene, for which a growth decrease of 23.6% was observed after 48 h. It was demonstrated that anti-Crf antibodies neutralized the enzymatic activity of recombinant Crf protein, and delayed fungal growth by 12.3% in vitro when added to spores. In a neutropenic rat model of invasive pulmonary aspergillosis, anti-Crf antibodies elicited a significant recruitment of neutrophils, macrophages and T CD4 lymphocytes but it was not correlated with a decrease of fungal burden in lungs and improvement in survival. Overall, our study highlighted the potential relevance of targeting Crf cell wall protein (CWP) with therapeutic antibodies.

7.
PLoS One ; 13(7): e0200843, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30040865

RESUMO

Aspergillosis is a fungal disease due to Aspergillus molds that can affect both humans and animals. As routine diagnosis remains difficult, improvement of basic knowledge with respect to its pathophysiology is critical to search for new biomarkers of infection and new therapeutic targets. Large-scale proteomics allows assessment of protein changes during various disease processes. In the present study, mass spectrometry iTRAQ® (isobaric tags for relative and absolute quantitation) protocol was used for direct identification and relative quantitation of host proteins in diseased fluids and tissues collected from an experimental rat model challenged with Aspergillus, as well as in blood obtained from naturally-infected penguins. In all, mass spectrometry analysis revealed that proteome during aspergillosis was mostly represented by proteins that usually express role in metabolic processes and biological process regulation. Ten and 17 proteins were significantly ≥4.0-fold overrepresented in blood of Aspergillus-diseased rats and penguins, respectively, while five and 39 were negatively ≥4.0-fold depleted within the same samples. In rat lungs, 33 proteins were identified with positive or negative relative changes versus controls and were quite different from those identified in the blood. Except for some zinc finger proteins, kinases, and histone transferases, and while three pathways were common (Wnt, cadherin and FGF), great inter-species variabilities were observed regarding the identity of the differentially-represented proteins. Thus, this finding confirmed how difficult it is to define a unique biomarker of infection. iTRAQ® protocol appears as a convenient proteomic tool that is greatly suited to ex vivo exploratory studies and should be considered as preliminary step before validation of new diagnostic markers and new therapeutic targets in humans.


Assuntos
Aspergilose/microbiologia , Interações Hospedeiro-Patógeno , Proteínas/química , Proteômica/métodos , Animais , Biomarcadores/sangue , Caderinas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Masculino , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Proteoma/genética , Ratos , Spheniscidae , Transcriptoma , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...