Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Gastroenterol ; 30(16): 2258-2271, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38690023

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG (n = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, n = 11) and positive control (phloroglucinol at 1.5 g/d HED, n = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration (P < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction (P < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception (P < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.


Assuntos
Quitina , Colo , Modelos Animais de Doenças , Glucanos , Síndrome do Intestino Irritável , Ratos Sprague-Dawley , Dor Visceral , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Humanos , Colo/efeitos dos fármacos , Colo/patologia , Ratos , Dor Visceral/tratamento farmacológico , Dor Visceral/fisiopatologia , Dor Visceral/metabolismo , Dor Visceral/etiologia , Quitina/farmacologia , Glucanos/farmacologia , Glucanos/administração & dosagem , Camundongos , Prebióticos/administração & dosagem , Ácido Trinitrobenzenossulfônico/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/fisiopatologia , Colite/patologia , Células HT29
2.
J Chem Inf Model ; 62(6): 1425-1436, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35239339

RESUMO

As long as the structural study of molecular mechanisms requires multiple molecular dynamics reflecting contrasted bioactive states, the subsequent analysis of molecular interaction networks remains a bottleneck to be fairly treated and requires a user-friendly 3D view of key interactions. Structural Interaction Network Analysis Protocols (SINAPs) is a proprietary python tool developed to (i) quickly solve key interactions able to distinguish two protein states, either from two sets of molecular dynamics simulations or from two crystallographic structures, and (ii) render a user-friendly 3D view of these key interactions through a plugin of UCSF Chimera, one of the most popular open-source viewing software for biomolecular systems. Through two case studies, glucose transporter-1 (GLUT-1) and A2A adenosine receptor (A2AR), SINAPs easily pinpointed key interactions observed experimentally and relevant for their bioactivities. This very effective tool was thus applied to identify the amino acids involved in the molecular enzymatic mechanisms ruling the activation of an immunomodulator drug candidate, P28 glutathione-S-transferase (P28GST). SINAPs is freely available at https://github.com/ParImmune/SINAPs.


Assuntos
Simulação de Dinâmica Molecular , Software , Proteínas/química
3.
J Enzyme Inhib Med Chem ; 37(1): 252-268, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34933639

RESUMO

New polycyclic heterocycles were synthesised and evaluated as potential inhibitors of thymidine phosphorylase (TP). Inspired by the pharmacophoric pyrimidinedione core of the natural substrate, four series have been designed in order to interact with large empty pockets of the active site: pyrimidoquinoline-2,4-diones (series A), pyrimidinedione linked to a pyrroloquinoline-1,3-diones (series B and C), the polycyclic heterocycle has been replaced by a pyrimidopyridopyrrolidinetetraone (series D). In each series, the tricyclic nitrogen heterocyclic moiety has been synthesised by a one-pot multicomponent reaction. Compared to 7-DX used as control, 2d, 2l, 2p (series A), 28a (series D), and the open intermediate 30 showed modest to good activities. A kinetic study confirmed that the most active compounds 2d, 2p are competitive inhibitors. Molecular docking analysis confirmed the interaction of these new compounds at the active binding site of TP and highlighted a plausible specific interaction in a pocket that had not yet been explored.


Assuntos
Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos/farmacologia , Simulação de Acoplamento Molecular , Nitrogênio/farmacologia , Compostos Policíclicos/farmacologia , Timidina Fosforilase/antagonistas & inibidores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Nitrogênio/química , Compostos Policíclicos/síntese química , Compostos Policíclicos/química , Relação Estrutura-Atividade , Timidina Fosforilase/metabolismo
4.
PLoS One ; 16(9): e0257281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34529707

RESUMO

The development of more effective, better tolerated drug treatments for progressive pulmonary fibrosis (of which idiopathic pulmonary fibrosis is the most common and severe form) is a research priority. The peroxisome proliferator-activated receptor gamma (PPAR-γ) is a key regulator of inflammation and fibrosis and therefore represents a potential therapeutic target. However, the use of synthetic PPAR-γ agonists may be limited by their potentially severe adverse effects. In a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, we have demonstrated that the non-racemic selective PPAR-γ modulator GED-0507 is able to reduce body weight loss, ameliorate clinical and histological features of pulmonary fibrosis, and increase survival rate without any safety concerns. Here, we focused on the biomolecular effects of GED-0507 on various inflammatory/fibrotic pathways. We demonstrated that preventive and therapeutic administration of GED-0507 reduced the BLM-induced mRNA expression of several markers of fibrosis, including transforming growth factor (TGF)-ß, alpha-smooth muscle actin, collagen and fibronectin as well as epithelial-to-mesenchymal transition (EMT) and expression of mucin 5B. The beneficial effect of GED-0507 on pulmonary fibrosis was confirmed in vitro by its ability to control TGFß-induced myofibroblast activation in the A549 human alveolar epithelial cell line, the MRC-5 lung fibroblast line, and primary human lung fibroblasts. Compared with the US Food and Drug Administration-approved antifibrotic drugs pirfenidone and nintedanib, GED-0507 displayed greater antifibrotic activity by controlling alveolar epithelial cell dysfunction, EMT, and extracellular matrix remodeling. In conclusion, GED-0507 demonstrated potent antifibrotic properties and might be a promising drug candidate for the treatment of pulmonary fibrosis.


Assuntos
Transdiferenciação Celular , Miofibroblastos/citologia , Propionatos/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Células A549 , Animais , Bleomicina , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Inflamação , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Fibrose Pulmonar/fisiopatologia , Resultado do Tratamento
6.
Chemosphere ; 213: 434-442, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30243209

RESUMO

Bisphenol A (BPA) has been used in the plastics industry for several decades. During the treatment of drinking water with chlorine reagent, the formation of chlorinated derivatives of BPA (ClxBPA) but also bromoBPA and bromochloroBPA is to be expected. Some of these compounds are considered to have an estrogenic effect and could induce major risks for human health by targeting different organs and systems in the body. In this paper, we describe the synthesis of chloro- and bromobisphenol A (ClxBPA, BrxBPA, BrxClxBPA)and their analytical characterization. These derivatives could be used as analytical standards in LC-MS/MS or evaluated in in vitro biological tests for their potential as endocrine disruptors. In this study, we evaluated the presence of BPA, ClxBPA in a pilot study from water samples. Range values found for BPA, ClxBPA were respectively 2.8-4169.3 ng/L and 0.8-11.3 ng/L.


Assuntos
Compostos Benzidrílicos/química , Fenóis/química , Água/química , Halogenação , Humanos
7.
Cancers (Basel) ; 10(5)2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738494

RESUMO

Intrinsically disordered protein YAP (yes-associated protein) interacts with TEADs transcriptional factors family (transcriptional enhancer associated domain) creating three interfaces. Interface 3, between the Ω-loop of YAP and a shallow pocket of TEAD was identified as the most important TEAD zone for YAP-TEAD interaction. Using the first X-ray structure of the hYAP50⁻71-hTEAD1209⁻426 complex (PDB 3KYS) published in 2010, a protein-protein interaction inhibitors-enriched library (175,000 chemical compounds) was screened against this hydrophobic pocket of TEAD. Four different chemical families have been identified and evaluated using biophysical techniques (thermal shift assay, microscale thermophoresis) and in cellulo assays (luciferase activity in transfected HEK293 cells, RTqPCR in MDA-MB231 cells). A first promising hit with micromolar inhibition in the luciferase gene reporter assay was discovered. This hit also decreased mRNA levels of TEAD target genes.

8.
Eur J Med Chem ; 146: 68-78, 2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29360044

RESUMO

A series of novel oxazolo[5,4-d]pyrimidines was designed via a scaffold hopping strategy and synthesized through a newly developed approach. All these compounds were evaluated for their biological activity toward CB1/CB2 cannabinoid receptors, their metabolic stability in mice liver microsomes and their cytotoxicity against several cell lines. Eight compounds have been identified as CB2 ligands with Ki values less than 1 µM. It is noteworthy that 2-(2-chlorophenyl)-5-methyl-7-(4-methylpiperazin-1-yl) oxazolo[5,4-d]pyrimidine 47 and 2-(2-chlorophenyl)-7-(4-ethylpiperazin-1-yl)- 5-methyloxazolo[5,4-d]pyrimidine 48 showed CB2 binding affinity in the nanomolar range and significant selectivity over CB1 receptors. Interestingly, functionality studies imply that they behave as competitive neutral antagonists. Moreover, all tested compounds are devoid of cytotoxicity toward several cell lines, including Chinese hamster ovary cells (CHO) and human colorectal adenocarcinoma cells HT29.


Assuntos
Oxazóis/farmacologia , Pirimidinas/farmacologia , Receptor CB2 de Canabinoide/antagonistas & inibidores , Animais , Ligação Competitiva/efeitos dos fármacos , Células CHO , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Células HT29 , Humanos , Masculino , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
9.
Br J Pharmacol ; 175(16): 3281-3297, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28898928

RESUMO

BACKGROUND AND PURPOSE: Recent crystal structures of GPCRs have emphasized the previously unappreciated role of the second extracellular (E2) loop in ligand binding and gating and receptor activation. Here, we have assessed the role of the E2 loop in the activation of the melatonin MT1 receptor and in the inactivation of the closely related orphan receptor GPR50. EXPERIMENTAL APPROACH: Chimeric MT1 -GPR50 receptors were generated and functionally analysed in terms of 2-[125 I]iodomelatonin binding, Gi /cAMP signalling and ß-arrestin2 recruitment. We also used computational molecular dynamics (MD) simulations. KEY RESULTS: MD simulations of 300 ns revealed (i) the tight hairpin structure of the E2 loop of the MT1 receptor (ii) the most suitable features for melatonin binding in MT1 receptors and (iii) major predicted rearrangements upon MT1 receptor activation, stabilizing interaction networks between Phe179 or Gln181 in the E2 loop and transmembrane helixes 5 and 6. Functional assays confirmed these predictions, because reciprocal replacement of MT1 and GPR50 residues/domains led to the predicted loss- and gain-of-melatonin action of MT1 receptors and GPR50 respectively. CONCLUSIONS AND IMPLICATIONS: Our work demonstrated the crucial role of the E2 loop for MT1 receptor and GPR50 function by proposing a model in which the E2 loop is important in stabilizing active MT1 receptor conformations and by showing how evolutionary processes appear to have selected for modifications in the E2 loop in order to make GPR50 unresponsive to melatonin. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.


Assuntos
Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Células HEK293 , Humanos , Melatonina/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/metabolismo
10.
Electrophoresis ; 38(19): 2536-2541, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28370074

RESUMO

A reversed-phase high-performance liquid chromatography (RP-HPLC) method has been developed and validated for the quantification of paclitaxel encapsulated in biodegradable poly(lactic-co-glycolic) (PLGA) copolymer nanoparticles. This simple (isocratic mode, without additive) and rapid (retention time of the paclitaxel under 4 min) methodology permits the detection of low quantities of paclitaxel in nanoparticulate formulations and the determination of the encapsulation efficiency (EE). Analysis was achieved on an octadecyl stationary phase. The isocratic mobile phase consisted of acetonitrile:water 80:20 (v/v) (flow rate = 0.8 mL/min). Stability of free paclitaxel was preliminary studied in those chromatographic conditions. The calibration curve was linear in the concentration range of 2-10 µg/mL (R2  = 0.9994). The method was specific with valuable trueness, repeatability (intra-day precision) and intermediate precision (inter-day precision) based on relative standard deviation (RSD) values (less than 2%). The limits of detection (LOD) and quantification (LOQ) were 0.56 and 1.85 ng/mL, respectively. This developed method was successfully employed for quantifying paclitaxel in PLGA 50:50 co-polymer nanoparticles. The accurate knowledge of the encapsulated paclitaxel concentration is essential to define the quantities of PLGA nanoparticles necessary to achieve the in vitro cell viability study.


Assuntos
Antineoplásicos/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Ácido Láctico/química , Paclitaxel/análise , Ácido Poliglicólico/química , Calibragem , Química Farmacêutica , Estabilidade de Medicamentos , Células HT29 , Humanos , Limite de Detecção , Células MCF-7 , Nanocápsulas , Paclitaxel/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectrofotometria Ultravioleta
11.
J Med Chem ; 60(1): 4-46, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27766867

RESUMO

Fatty acid ethanolamides (FAEs) and endocannabinoids (ECs) have been shown to alleviate pain and inflammation, regulate motility and appetite, and produce anticancer, anxiolytic, and neuroprotective efficacies via cannabinoid receptor type 1 (CB1) or type 2 (CB2) or via peroxisome proliferator-activated receptor α (PPAR-α) stimulation. FAEs and ECs are synthesized by a series of endogenous enzymes, including N-acylphosphatidylethanolaminephospholipase D (NAPE-PLD), diacylglycerol lipase (DAGL), or phospholipase C (PLC), and their metabolism is mediated by several metabolic enzymes, including fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), N-acylethanolamine acid amidase (NAAA), or cyclooxygenase 2 (COX-2). Over the past decades, increasing the concentration of FAEs and ECs through the inhibition of degrading enzymes has been considered to be a viable therapeutic approach to enhance their antinociceptive and anti-inflammatory effects, as well as to protect the nervous system.


Assuntos
Amidoidrolases/antagonistas & inibidores , Amidoidrolases/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Monoacilglicerol Lipases/uso terapêutico , Animais , Humanos
12.
J Chromatogr A ; 1467: 473-481, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27452989

RESUMO

Four polysaccharide based chiral stationary phases were chosen, two chlorinated: Lux™ Amylose-2 (tris-5-chloro-2-methylphenylcarbamate of amylose) and Lux™ Cellulose-2 (tris-3-chloro-4-methylphenylcarbamate of cellulose) and two methylated: Chiralpak® AD-H (tris-3,5-dimethylphenylcarbamate of amylose) and Chiralcel® OD-H (tris-3,5-dimethylphenylcarbamate of cellulose) to separate four 3-carboxamido-5-aryl isoxazole derivatives by supercritical fluid chromatography. The effect of chiral stationary phase, co-solvent nature (MeOH, EtOH, 2-PrOH and ACN) and percentage (10-20%), temperature (20-45°C) and chemical structure of the compounds on retention, resolution and elution order were thoroughly studied. In addition, thermodynamic parameters were determined from the linear portion of the Van't Hoff plots. For all the derivatives, the Lux™ Cellulose-2 and Chiralpak® AD-H provided excellent resolutions (Rs=9.78) in short run time (under 6min). The preparation of about 10mg of each of the eight enantiomers was achieved successfully on a Chiralpak® AD-H with various percentages of ethanol as a co-solvent. Lastly, the enantiomeric purity of each of the eight individual enantiomer generated was determined and found higher than 98%.


Assuntos
Amilose/química , Celulose/química , Cromatografia Líquida de Alta Pressão , Cromatografia com Fluido Supercrítico , Isoxazóis/química , Organofosfatos/química , Fenilcarbamatos/química , Polissacarídeos/química , Reprodutibilidade dos Testes , Solventes , Estereoisomerismo , Temperatura , Termodinâmica
13.
Bioorg Med Chem Lett ; 26(11): 2701-5, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27117424

RESUMO

A new series of 3-carboxamido-5-aryl-isoxazoles was designed, synthesized and evaluated for their biological activity. Different pharmacomodulations have been explored and the lipophilicity of these compounds was assessed. Investigation of the in vitro biological activity led to the identification of 5 compounds as potent FAAH inhibitors, their good FAAH inhibition capacity is probably correlated with their suitable lipophilicity. Specifically, compound 25 showed similar inhibition potency against FAAH in comparison with URB597, one of the most potent FAAH inhibitor known to date.


Assuntos
Amidoidrolases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Isoxazóis/farmacologia , Amidoidrolases/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Células HT29 , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Estrutura Molecular , Relação Estrutura-Atividade
14.
J Enzyme Inhib Med Chem ; 31(3): 448-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25942360

RESUMO

Phthalates, used in medical devices (MDs), have been identified as reproductive and developmental toxicants. Their toxicity varies somewhat depending on the specific phthalate and is in part linked to the activation of Peroxisome Proliferating-Activated Receptors (PPARs). So, the use of MDs containing targeted phthalates such as di(2-ethylhexyl) phthalate (DEHP) has been challenged by European directive 2007/47/EC. Therefore, MDs manufacturers were forced to quickly find replacement plasticizers. However, very little toxicological and epidemiological studies are available on human health. So, we proceeded to dock these chemicals in order to identify compounds that are likely to interact with PPARs binding sites. The results obtained are generally very mixed on the harmlessness of these alternatives. Moreover, no data exist on the biological effects of their possible metabolites. As DEHP toxicity resulted mainly from its major metabolites, generalizing the use of these plasticizers without conducting extensive studies on the possible effects on human health of their metabolites seems inconceivable.


Assuntos
Dietilexilftalato/farmacologia , Simulação de Acoplamento Molecular , PPAR alfa/química , PPAR gama/química , Plastificantes/química , Dietilexilftalato/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , PPAR alfa/metabolismo , PPAR gama/metabolismo , Ácidos Ftálicos/efeitos adversos , Ácidos Ftálicos/química , Ácidos Ftálicos/toxicidade , Plastificantes/efeitos adversos , Plastificantes/metabolismo , Plastificantes/toxicidade , Relação Estrutura-Atividade
15.
Eur J Med Chem ; 106: 15-25, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26513641

RESUMO

In the aim of identifying new privileged structures, we describe the 5-steps synthesis of cyclic guanidine compounds "tetrahydroisoquinoline-iminoimidazolines" derived from tetrahydroisoquinoline-hydantoin core. In order to evaluate this new minimal structure and the impact of replacing a carbonyle by a guanidine moiety, their affinity towards adenosine receptor A2A was evaluated and compared to those of tetrahydroisoquinoline-hydantoin compounds.


Assuntos
Desenho de Fármacos , Imidazolinas/farmacologia , Antagonistas de Receptores Purinérgicos P1/síntese química , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptor A2A de Adenosina/metabolismo , Tetra-Hidroisoquinolinas/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Imidazolinas/síntese química , Imidazolinas/química , Modelos Moleculares , Estrutura Molecular , Antagonistas de Receptores Purinérgicos P1/química , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/química
16.
ACS Med Chem Lett ; 6(2): 198-203, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25699149

RESUMO

The CB2 cannabinoid receptor has been implicated in the regulation of intestinal inflammation. Following on from the promising activity of a series of 4-oxo-1,4-dihydroquinoline-3-carboxamide, we developed constrained analogues based on a 2H-pyrazolo[4,3-c]quinolin-3(5H)-one scaffold, with improved affinity for the hCB2 receptor and had very high selectivity over the hCB1 receptor. Importantly, the lead of this series (26, hCB2: K i = 0.39 nM, hCB1: K i > 3000 nM) was found to protect mice against experimental colitis after oral administration.

17.
PLoS Comput Biol ; 10(11): e1003902, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25376021

RESUMO

A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius). Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000) interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th) 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total) involving eight different ligands (conducted in triplicate) in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1.


Assuntos
Antígenos CD1d/química , Antígenos CD1d/metabolismo , Glicolipídeos/química , Glicolipídeos/metabolismo , Células T Matadoras Naturais/química , Células Th1/química , Células Th2/química , Animais , Humanos , Camundongos , Simulação de Dinâmica Molecular , Termodinâmica
18.
J Chromatogr A ; 1363: 257-69, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25039068

RESUMO

Analytical enantioseparation of three pyroglutamide derivatives with pharmacological activity against the purinergic receptor P2X7, was run in both high-performance liquid chromatography and supercritical fluid chromatography. Four polysaccharide based chiral stationary phases, namely amylose and cellulose tris (3,5-dimethylphenylcarbamate), amylose tris ((S)-α-methylbenzylcarbamate) and cellulose tris (4-methylbenzoate) with various mobile phases consisted of either heptane/alcohol (ethanol and 2-propanol) or carbon dioxide/alcohol (methanol or ethanol) mixtures, were investigated. After analytical screenings, the best conditions were transposed, for compound 1, to semi-preparative scale. Each approach was fully validated to meet the International Conference on Harmonisation requirements and compared. Whereas the limits of detection and quantification were near six-fold better in HPLC than in SFC (respectively 0.20 and 0.66 µM versus 1.11 and 3.53 µM for one of the enantiomers), in terms of low solvent consumption (7.2 mL of EtOH versus 3.2 mL of EtOH plus 28.8 mL of toxic and inflammable heptane per injection in SFC and HPLC, respectively), time effective cost (9 min versus 40 min per injection in SFC and HPLC, respectively) and yields (98% versus 71% in SFC and HPLC, respectively), the latter method proved its ecological superiority.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia com Fluido Supercrítico/métodos , Polissacarídeos/química , Ácido Pirrolidonocarboxílico , Receptores Purinérgicos P2X7 , Estereoisomerismo
19.
Bioorg Med Chem Lett ; 24(5): 1322-6, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24508127

RESUMO

A series of 3-carboxamido-5-aryl-isoxazoles designed as CB2 agonists were evaluated as FAAH inhibitors. The pharmacological results led to identify structure-activity relationships enabling to switch cannabinoid response from CB2 agonists to FAAH inhibitors. Two compounds were selected for their FAAH and/or CB2 activity, and evaluated in a colitis model for their anti-inflammatory activity. Results showed that compounds 10 and 11 inhibit the development of DSS-induced acute colitis in mice and then, are interesting leads to explore new drug candidates for IBD.


Assuntos
Adamantano/análogos & derivados , Amidoidrolases/antagonistas & inibidores , Anti-Inflamatórios/química , Canabinoides/química , Inibidores Enzimáticos/química , Isoxazóis/química , Receptor CB2 de Canabinoide/agonistas , Adamantano/química , Adamantano/farmacologia , Adamantano/uso terapêutico , Amidoidrolases/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Peso Corporal/efeitos dos fármacos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Colite/tratamento farmacológico , Colite/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
20.
J Med Chem ; 57(13): 5489-508, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24428717

RESUMO

Since the discovery in 1995 of α-galactosylceramide 1 (α-GalCer), also known as KRN7000,1 hundreds of compounds have been synthesized in order to activate invariant natural killer T (iNKT) cells. Such keen interest for this lymphocyte cell type is due to its ability to produce different cytokines that bias the immune response toward a Th1 or Th2 profile. Thus, an understanding of the immune polarization mechanism via iNKT activation may pave the way toward new therapeutics in various domains including cancer and infectious and autoimmune diseases. In this review, we propose an up-to-date analysis of iNKT activators associated with a structure-activity relationship (SAR) study aimed at complementing available reviews by highlighting molecular bases for a selective immune response.


Assuntos
Galactosilceramidas/farmacologia , Células T Matadoras Naturais/imunologia , Animais , Antígenos CD1d/imunologia , Humanos , Ligantes , Ativação Linfocitária/imunologia , Camundongos , Modelos Moleculares , Células T Matadoras Naturais/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade , Células Th1/imunologia , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...