Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 56: e12484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36946840

RESUMO

Borderline personality disorder (BPD) is a severe psychiatric condition that affects up to 2.7% of the population and is highly linked to functional impairment and suicide. Despite its severity, there is a lack of knowledge about its pathophysiology. Studies show genetic influence and childhood violence as factors that may contribute to the development of BPD; however, the involvement of neuroinflammation in BPD remains poorly investigated. This article aimed to explore the pathophysiology of BPD according to the levels of brain-derived neurotrophic factor (BDNF), inflammatory cytokines, and oxidative stress substances that exacerbate neuronal damage. Few articles have been published on this theme. They show that patients with BPD have a lower level of BDNF and a higher level of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in peripheral blood, associated with increased plasma levels of oxidative stress markers, such as malondialdehyde and 8-hydroxy-2-deoxyguanosine. Therefore, more research on the topic is needed, mainly with a pre-clinical and clinical focus.


Assuntos
Transtorno da Personalidade Borderline , Humanos , Criança , Transtorno da Personalidade Borderline/epidemiologia , Transtorno da Personalidade Borderline/genética , Transtorno da Personalidade Borderline/psicologia , Fator Neurotrófico Derivado do Encéfalo/genética , Interleucina-6 , Fator de Necrose Tumoral alfa
2.
Braz. j. med. biol. res ; 56: e12484, 2023. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420761

RESUMO

Borderline personality disorder (BPD) is a severe psychiatric condition that affects up to 2.7% of the population and is highly linked to functional impairment and suicide. Despite its severity, there is a lack of knowledge about its pathophysiology. Studies show genetic influence and childhood violence as factors that may contribute to the development of BPD; however, the involvement of neuroinflammation in BPD remains poorly investigated. This article aimed to explore the pathophysiology of BPD according to the levels of brain-derived neurotrophic factor (BDNF), inflammatory cytokines, and oxidative stress substances that exacerbate neuronal damage. Few articles have been published on this theme. They show that patients with BPD have a lower level of BDNF and a higher level of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in peripheral blood, associated with increased plasma levels of oxidative stress markers, such as malondialdehyde and 8-hydroxy-2-deoxyguanosine. Therefore, more research on the topic is needed, mainly with a pre-clinical and clinical focus.

3.
Braz J Med Biol Res ; 55: e12195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36259798

RESUMO

We tested the hypothesis that administration of omega (ω)-9, ω-3, and ω-6 to mice can prevent oxidative alterations responsible for behavioral and cognitive alterations related with aging. Twenty-eight-day-old mice received skim milk (SM group), SM enriched with omega oil mixture (EM group), or water (control group) for 10 and 14 months, equivalent to middle age. Mice were evaluated for behavioral alterations related to depression and memory and oxidative status [brain levels of thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), and myeloperoxidase (MPO)]. The 10-month EM group increased immobility time during the forced swimming test compared with control, indicating increased stress response. The 14-month SM- and EM-treated groups increased sucrose consumption compared with control, showing an expanded motivational state. The 14-month SM group decreased the number of rearings compared with the 14-month control and EM groups. The number of entries and time spent in the central square of the open field was higher in the 10-month EM group than in the control, revealing an anxiolytic-like behavior. TBARS decreased in the hippocampus and striatum of the 10-month EM group compared with the control. A similar decrease was observed in the striatum of the 10-month SM group. GSH levels were higher in all 14-month treated groups compared with 10-month groups. MPO activity was higher in the 14-month EM group compared with the 14-month control and SM groups, revealing a possible pro-inflammatory status. In conclusion, omega oils induced conflicting alterations in middle-aged mice, contributing to enhanced behavior and anxiolytic and expanded motivational state, but also to increased stress response and pro-inflammatory alterations.


Assuntos
Ansiolíticos , Ácidos Graxos Ômega-3 , Animais , Camundongos , Masculino , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Peroxidase , Ansiolíticos/farmacologia , Leite/química , Leite/metabolismo , Estresse Oxidativo , Ácidos Graxos Ômega-3/farmacologia , Glutationa/metabolismo , Sacarose/farmacologia , Água
4.
Braz. j. med. biol. res ; 55: e12195, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1403905

RESUMO

We tested the hypothesis that administration of omega (ω)-9, ω-3, and ω-6 to mice can prevent oxidative alterations responsible for behavioral and cognitive alterations related with aging. Twenty-eight-day-old mice received skim milk (SM group), SM enriched with omega oil mixture (EM group), or water (control group) for 10 and 14 months, equivalent to middle age. Mice were evaluated for behavioral alterations related to depression and memory and oxidative status [brain levels of thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), and myeloperoxidase (MPO)]. The 10-month EM group increased immobility time during the forced swimming test compared with control, indicating increased stress response. The 14-month SM- and EM-treated groups increased sucrose consumption compared with control, showing an expanded motivational state. The 14-month SM group decreased the number of rearings compared with the 14-month control and EM groups. The number of entries and time spent in the central square of the open field was higher in the 10-month EM group than in the control, revealing an anxiolytic-like behavior. TBARS decreased in the hippocampus and striatum of the 10-month EM group compared with the control. A similar decrease was observed in the striatum of the 10-month SM group. GSH levels were higher in all 14-month treated groups compared with 10-month groups. MPO activity was higher in the 14-month EM group compared with the 14-month control and SM groups, revealing a possible pro-inflammatory status. In conclusion, omega oils induced conflicting alterations in middle-aged mice, contributing to enhanced behavior and anxiolytic and expanded motivational state, but also to increased stress response and pro-inflammatory alterations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...