Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 120(6): 895-902, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26797486

RESUMO

High explosives that are photoactive, i.e., can be initiated with light, offer significant advantages in reduced potential for accidental electrical initiation. We examined a series of structurally related tetrazine based photoactive high explosive materials to detail their photochemical and photophysical properties. Using photobleaching infrared absorption, we determined quantum yields of photochemistry for nanosecond pulsed excitation at 355 and 532 nm. Changes in mass spectrometry during laser irradiation in vacuum measured the evolution of gaseous products. Fluorescence spectra, quantum yields, and lifetimes were measured to observe radiative channels of energy decay that compete with photochemistry. For the 6 materials studied, quantum yields of photochemistry ranged from <10(-5) to 0.03 and quantum yield of fluorescence ranged from <10(-3) to 0.33. In all cases, the photoexcitation nonradiatively relaxed primarily to heat, appropriate for supporting photothermal initiation processes. The photochemistry observed was dominated by ring scission of the tetrazine, but there was evidence of more extensive multistep reactions as well.

2.
J Am Chem Soc ; 128(20): 6589-94, 2006 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-16704258

RESUMO

The synthesis of low-density, nanoporous materials has been an active area of study in chemistry and materials science dating back to the initial synthesis of aerogels. These materials, however, are most often limited to metal oxides, e.g., silica and alumina, and organic aerogels, e.g., resorcinol/formaldehyde, or carbon aerogels, produced from the pyrolysis of organic aerogels. The ability to form monolithic metallic nanocellular porous materials is difficult and sometimes elusive using conventional methodology. Here we report a relatively simple method to access unprecedented ultralow-density, nanostructured, monolithic, transition-metal foams, utilizing self-propagating combustion synthesis of novel transition-metal complexes containing high nitrogen energetic ligands. During the investigation of the decomposition behavior of the high-nitrogen transition metal complexes, it was discovered that nanostructured metal monolithic foams were formed in a post flame-front dynamic assembly having remarkably low densities down to 0.011 g cm(-3) and extremely high surface areas as high as 270 m(2) g(-1). We have produced monolithic nanoporous metal foams via this method of iron, cobalt, copper, and silver metals. We expect to be able to apply this to many other metals and to be able to tailor the resulting structure significantly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...