Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 262: 107142, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989913

RESUMO

This work studied the spatial pattern of four natural radionuclides (226Ra, 228Ra, 228Th and 40K) as well as one artificial one (137Cs) in soils in the Chimborazo province (Ecuador), which belongs to the North Andes of South America. Soil samples were collected considering the Ecuador geological map. Statistical analyses showed that activity concentrations of 226Ra, 228Ra, 228Th do not exceed the worldwide average, while one geological unit exceeds the worldwide average for 40K. These high activity concentrations are attributed to radionuclide accumulation in plutonic and metamorphic rocks and also in ash resulting from eruptions of the Sangay volcano. The inverse distance weighted interpolation method was used to develop corresponding radioactivity maps where the highest activity concentrations are in the central-east of the studied area. In addition, a distribution pattern of 226Ra and 40K is observed in the geologies influenced by the presence of Chimborazo, Igualata, Tungurahua and Altar volcanoes. Spearman's nonparametric test shows positive correlations suggesting the presence of very homogeneous lithologies and that volcanic activities can influence the distribution of radionuclides in our environment. In seven of the samples, 137Cs was detected.


Assuntos
Monitoramento de Radiação , Radioatividade , Poluentes Radioativos do Solo , Solo , Poluentes Radioativos do Solo/análise , Monitoramento de Radiação/métodos , Radioisótopos de Césio/análise
2.
Cell ; 186(4): 821-836.e13, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36750096

RESUMO

The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.


Assuntos
Endocitose , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Humanos , Camundongos , Microscopia Crioeletrônica , Rim/metabolismo , Ligantes , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
3.
J Immunol ; 208(7): 1652-1663, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35315788

RESUMO

Immunodeficient mice reconstituted with immune systems from patients, or personalized immune (PI) mice, are powerful tools for understanding human disease. Compared with immunodeficient mice transplanted with human fetal thymus tissue and fetal liver-derived CD34+ cells administered i.v. (Hu/Hu mice), PI mice, which are transplanted with human fetal thymus and adult bone marrow (aBM) CD34+ cells, demonstrate reduced levels of human reconstitution. We characterized APC and APC progenitor repopulation in human immune system mice and detected significant reductions in blood, bone marrow (BM), and splenic APC populations in PI compared with Hu/Hu mice. APC progenitors and hematopoietic stem cells (HSCs) were less abundant in aBM CD34+ cells compared with fetal liver-derived CD34+ cell preparations, and this reduction in APC progenitors was reflected in the BM of PI compared with Hu/Hu mice 14-20 wk posttransplant. The number of HSCs increased in PI mice compared with the originally infused BM cells and maintained functional repopulation potential, because BM from some PI mice 28 wk posttransplant generated human myeloid and lymphoid cells in secondary recipients. Moreover, long-term PI mouse BM contained functional T cell progenitors, evidenced by thymopoiesis in thymic organ cultures. Injection of aBM cells directly into the BM cavity, transgenic expression of hematopoietic cytokines, and coinfusion of human BM-derived mesenchymal stem cells synergized to enhance long-term B cell and monocyte levels in PI mice. These improvements allow a sustained time frame of 18-22 wk where APCs and T cells are present and greater flexibility for modeling immune disease pathogenesis and immunotherapies in PI mice.


Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Animais , Células da Medula Óssea , Células-Tronco Hematopoéticas , Humanos , Fígado , Camundongos
4.
J Transl Autoimmun ; 3: 100061, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32875283

RESUMO

During T cell development in mice, thymic negative selection deletes cells with the potential to recognize and react to self-antigens. In human T cell-dependent autoimmune diseases such as Type 1 diabetes, multiple sclerosis, and rheumatoid arthritis, T cells reactive to autoantigens are thought to escape negative selection, traffic to the periphery and attack self-tissues. However, physiological thymic negative selection of autoreactive human T cells has not been previously studied. We now describe a human T-cell receptor-transgenic humanized mouse model that permits the study of autoreactive T-cell development in a human thymus. Our studies demonstrate that thymocytes expressing the autoreactive Clone 5 TCR, which recognizes insulin B:9-23 presented by HLA-DQ8, are efficiently negatively selected at the double and single positive stage in human immune systems derived from HLA-DQ8+ HSCs. In the absence of hematopoietic expression of the HLA restriction element, negative selection of Clone 5 is less efficient and restricted to the single positive stage. To our knowledge, these data provide the first demonstration of negative selection of human T cells recognizing a naturally-expressed tissue-restricted antigen. Intrathymic antigen presenting cells are required to delete less mature thymocytes, while presentation by medullary thymic epithelial cells may be sufficient to delete more mature single positive cells. These observations set the stage for investigation of putative defects in negative selection in human autoimmune diseases.

5.
Xenotransplantation ; 27(1): e12558, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31565822

RESUMO

BACKGROUND: Tolerance-inducing approaches to xenotransplantation would be optimal and may be necessary for long-term survival of transplanted pig organs in human patients. The ideal approach would generate donor-specific unresponsiveness to the pig organ without suppressing the patient's normal immune function. Porcine thymus transplantation has shown efficacy in promoting xenotolerance in humanized mice and large animal models. However, murine studies demonstrate that T cells selected in a swine thymus are positively selected only by swine thymic epithelial cells, and therefore, cells expressing human HLA-restricted TCRs may not be selected efficiently in a transplanted pig thymus. This may lead to suboptimal patient immune function. METHODS: To assess human thymocyte selection in a pig thymus, we used a TCR transgenic humanized mouse model to study positive selection of cells expressing the MART1 TCR, a well-characterized human HLA-A2-restricted TCR, in a grafted pig thymus. RESULTS: Positive selection of T cells expressing the MART1 TCR was inefficient in both a non-selecting human HLA-A2- or swine thymus compared with an HLA-A2+ thymus. Additionally, CD8 MART1 TCRbright T cells were detected in the spleens of mice transplanted with HLA-A2+ thymi but were significantly reduced in the spleens of mice transplanted with swine or HLA-A2- thymi. [Correction added on October 15, 2019, after first online publication: The missing superscript values +, -, and bright have been included in the Results section.] CONCLUSIONS: Positive selection of cells expressing a human-restricted TCR in a transplanted pig thymus is inefficient, suggesting that modifications to improve positive selection of cells expressing human-restricted TCRs in a pig thymus may be necessary to support development of a protective human T-cell pool in future patients.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Timo/fisiologia , Animais , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Antígeno HLA-A2/metabolismo , Humanos , Tolerância Imunológica , Antígeno MART-1/imunologia , Camundongos , Camundongos SCID , Camundongos Transgênicos , Transplante de Órgãos , Suínos , Transplante Heterólogo
6.
Proc Natl Acad Sci U S A ; 114(41): 10954-10959, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28874533

RESUMO

There is an urgent and unmet need for humanized in vivo models of type 1 diabetes to study immunopathogenesis and immunotherapy, and in particular antigen-specific therapy. Transfer of patient blood lymphocytes to immunodeficient mice is associated with xenogeneic graft-versus-host reactivity that complicates assessment of autoimmunity. Improved models could identify which human T cells initiate and participate in beta-cell destruction and help define critical target islet autoantigens. We used humanized mice (hu-mice) containing robust human immune repertoires lacking xenogeneic graft-versus-host reactivity to address this question. Hu-mice constructed by transplantation of HLA-DQ8+ human fetal thymus and CD34+ cells into HLA-DQ8-transgenic immunodeficient mice developed hyperglycemia and diabetes after transfer of autologous HLA-DQ8/insulin-B:9-23 (InsB:9-23)-specific T-cell receptor (TCR)-expressing human CD4+ T cells and immunization with InsB:9-23. Survival of the infused human T cells depended on the preexisting autologous human immune system, and pancreatic infiltration by human CD3+ T cells and insulitis were observed in the diabetic hu-mice, provided their islets were stressed by streptozotocin. This study fits Koch's postulate for pathogenicity, demonstrating a pathogenic role of islet autoreactive CD4+ T-cell responses in type 1 diabetes induction in humans, underscores the role of the target beta-cells in their immunological fate, and demonstrates the capacity to initiate disease with T cells, recognizing the InsB:9-23 epitope in the presence of islet inflammation. This preclinical model has the potential to be used in studies of the pathogenesis of type 1 diabetes and for testing of clinically relevant therapeutic interventions.


Assuntos
Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Antígenos HLA-DQ/imunologia , Células Secretoras de Insulina/imunologia , Insulina/imunologia , Fragmentos de Peptídeos/imunologia , Animais , Autoimunidade , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos
7.
Blood Adv ; 1(23): 2007-2018, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29296847

RESUMO

B cells play a major role in antigen presentation and antibody production in the development of autoimmune diseases, and some of these diseases disproportionally occur in females. Moreover, immune responses tend to be stronger in female vs male humans and mice. Because it is challenging to distinguish intrinsic from extrinsic influences on human immune responses, we used a personalized immune (PI) humanized mouse model, in which immune systems were generated de novo from adult human hematopoietic stem cells (HSCs) in immunodeficient mice. We assessed the effect of recipient sex and of donor autoimmune diseases (type 1 diabetes [T1D] and rheumatoid arthritis [RA]) on human B-cell development in PI mice. We observed that human B-cell levels were increased in female recipients regardless of the source of human HSCs or the strain of immunodeficient recipient mice. Moreover, mice injected with T1D- or RA-derived HSCs displayed B-cell abnormalities compared with healthy control HSC-derived mice, including altered B-cell levels, increased proportions of mature B cells and reduced CD19 expression. Our study revealed an HSC-extrinsic effect of recipient sex on human B-cell reconstitution. Moreover, the PI humanized mouse model revealed HSC-intrinsic defects in central B-cell tolerance that recapitulated those in patients with autoimmune diseases. These results demonstrate the utility of humanized mouse models as a tool to better understand human immune cell development and regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...