Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pain Res ; 10: 2135-2145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979159

RESUMO

Sound stress (SS) elicits behavioral changes, including pain behaviors. However, the neuronal mechanisms underlying SS-induced pain behaviors remain to be explored. The current study examined the effects of SS on nociceptive behaviors and changes in expression of the spinal corticotropin-releasing factor (CRF) system in male Sprague Dawley rats with and without thermal pain. We also studied the effects of SS on plasma corticosterone and fecal output. Rats were exposed to 3 days of SS protocol (n = 12/group). Changes in nociceptive behaviors were assessed using thermal and mechanical pain tests. Following the induction of SS, a subgroup of rats (n = 6/group) was inflicted with thermal injury and on day 14 postburn nociceptive behaviors were reassessed. Spinal CRF receptor mRNA expression was analyzed by semiquantitative reverse transcription polymerase chain reaction (RT-PCR). In addition, plasma corticosterone and spinal CRF concentrations were quantified using enzyme-linked immunosorbent assay (ELISA). Increased defecation was observed in SS rats. SS produced transient mechanical allodynia in naive rats, whereas it exacerbated thermal pain in thermally injured rats. Spinal CRFR2 mRNA expression was unaffected by stress or thermal injury alone, but their combined effect significantly increased its expression. SS had no effect on plasma corticosterone and spinal CRF protein in postburn rats. To conclude, SS is capable of exacerbating postburn thermal pain, which is linked to increased CRFR2 gene expression in the spinal cord. Future studies have to delineate whether attenuation of CRFR2 signaling at the spinal level prevents stress-induced exacerbation of burn pain.

2.
J R Soc Interface ; 14(132)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28747394

RESUMO

Thousands of fungal species use surface energy to power the launch of their ballistospores. The surface energy is released when a spherical Buller's drop at the spore's hilar appendix merges with a flattened drop on the adaxial side of the spore. The launching mechanism is primarily understood in terms of energetic models, and crucial features such as launching directionality are unexplained. Integrating experiments and simulations, we advance a mechanistic model based on the capillary-inertial coalescence between the Buller's drop and the adaxial drop, a pair that is asymmetric in size, shape and relative position. The asymmetric coalescence is surprisingly effective and robust, producing a launching momentum governed by the Buller's drop and a launching direction along the adaxial plane of the spore. These key functions of momentum generation and directional control are elucidated by numerical simulations, demonstrated on spore-mimicking particles, and corroborated by published ballistospore kinematics. Our work places the morphological and kinematic diversity of ballistospores into a general mechanical framework, and points to a generic catapulting mechanism of colloidal particles with implications for both biology and engineering.


Assuntos
Ascomicetos/fisiologia , Basidiomycota/fisiologia , Esporos Fúngicos/fisiologia , Fenômenos Biomecânicos , Modelos Biológicos , Movimento
3.
Appl Phys Lett ; 109(1): 011601, 2016 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-27478201

RESUMO

Surface energy released upon drop coalescence is known to power the self-propelled jumping of liquid droplets on superhydrophobic solid surfaces, and the jumping droplets can additionally carry colloidal payloads toward self-cleaning. Here, we show that drop coalescence on a spherical particle leads to self-propelled launching of the particle from virtually any solid surface. The main prerequisite is an intermediate wettability of the particle, such that the momentum from the capillary-inertial drop coalescence process can be transferred to the particle. By momentum conservation, the launching velocity of the particle-drop complex is proportional to the capillary-inertial velocity based on the drop radius and to the fraction of the liquid mass in the total mass. The capillary-inertial catapult is not only an alternative mechanism for removing colloidal contaminants, but also a useful model system for studying ballistospore launching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...