Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; : e4321, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38763891

RESUMO

Secondary tropical forests play an increasingly important role in carbon budgets and biodiversity conservation. Understanding successional trajectories is therefore imperative for guiding forest restoration and climate change mitigation efforts. Forest succession is driven by the demographic strategies-combinations of growth, mortality and recruitment rates-of the tree species in the community. However, our understanding of demographic diversity in tropical tree species stems almost exclusively from old-growth forests. Here, we assembled demographic information from repeated forest inventories along chronosequences in two wet (Costa Rica, Panama) and two dry (Mexico) Neotropical forests to assess whether the ranges of demographic strategies present in a community shift across succession. We calculated demographic rates for >500 tree species while controlling for canopy status to compare demographic diversity (i.e., the ranges of demographic strategies) in early successional (0-30 years), late successional (30-120 years) and old-growth forests using two-dimensional hypervolumes of pairs of demographic rates. Ranges of demographic strategies largely overlapped across successional stages, and early successional stages already covered the full spectrum of demographic strategies found in old-growth forests. An exception was a group of species characterized by exceptionally high mortality rates that was confined to early successional stages in the two wet forests. The range of demographic strategies did not expand with succession. Our results suggest that studies of long-term forest monitoring plots in old-growth forests, from which most of our current understanding of demographic strategies of tropical tree species is derived, are surprisingly representative of demographic diversity in general, but do not replace the need for further studies in secondary forests.

2.
Biol Rev Camb Philos Soc ; 99(3): 928-949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38226776

RESUMO

The core principle shared by most theories and models of succession is that, following a major disturbance, plant-environment feedback dynamics drive a directional change in the plant community. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the abiotic (e.g. soil nutrients) or biotic (e.g. dispersers) environment, which differentially affect species availability or performance. This, in turn, leads to shifts in the species composition of the plant community. However, there are many other PE feedback loops that potentially drive succession, each of which can be considered a model of succession. While plant-environment feedback loops in principle generate predictable successional trajectories, succession is generally observed to be highly variable. Factors contributing to this variability are the stochastic processes involved in feedback dynamics, such as individual mortality and seed dispersal, and extrinsic causes of succession, which are not affected by changes in the plant community but do affect species performance or availability. Both can lead to variation in the identity of dominant species within communities. This, in turn, leads to further contingencies if these species differ in their effect on their environment (priority effects). Predictability and variability are thus intrinsically linked features of ecological succession. We present a new conceptual framework of ecological succession that integrates the propositions discussed above. This framework defines seven general causes: landscape context, disturbance and land-use, biotic factors, abiotic factors, species availability, species performance, and the plant community. When involved in a feedback loop, these general causes drive succession and when not, they are extrinsic causes that create variability in successional trajectories and dynamics. The proposed framework provides a guide for linking these general causes into causal pathways that represent specific models of succession. Our framework represents a systematic approach to identifying the main feedback processes and causes of variation at different successional stages. It can be used for systematic comparisons among study sites and along environmental gradients, to conceptualise studies, and to guide the formulation of research questions and design of field studies. Mapping an extensive field study onto our conceptual framework revealed that the pathways representing the study's empirical outcomes and conceptual model had important differences, underlining the need to move beyond the conceptual models that currently dominate in specific fields and to find ways to examine the importance of and interactions among alternative causal pathways of succession. To further this aim, we argue for integrating long-term studies across environmental and anthropogenic gradients, combined with controlled experiments and dynamic modelling.


Assuntos
Ecossistema , Plantas , Modelos Biológicos , Desenvolvimento Vegetal/fisiologia
3.
Nat Plants ; 9(11): 1795-1809, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37872262

RESUMO

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.


Assuntos
Ecossistema , Árvores , Humanos , Árvores/metabolismo , Florestas , Folhas de Planta/metabolismo , Hábitos , Carbono/metabolismo
5.
Nature ; 621(7980): 773-781, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612513

RESUMO

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Assuntos
Biodiversidade , Meio Ambiente , Espécies Introduzidas , Árvores , Bases de Dados Factuais , Atividades Humanas , Espécies Introduzidas/estatística & dados numéricos , Espécies Introduzidas/tendências , Filogenia , Chuva , Temperatura , Árvores/classificação , Árvores/fisiologia
6.
Trends Ecol Evol ; 38(7): 643-653, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36898928

RESUMO

Ecosystem restoration conventionally focuses on ecological targets. However, while ecological targets are crucial to mobilizing political, social, and financial capital, they do not encapsulate the need to: integrate social, economic, and ecological dimensions and systems approaches; reconcile global targets and local objectives; and measure the rate of progress toward multiple and synergistic goals. Restoration is better conceived as an inclusive social-ecological process that integrates diverse values, practices, knowledge, and restoration objectives across temporal and spatial scales and stakeholder groups. Taking a more process-based approach will ultimately enable greater social-ecological transformation, greater restoration effectiveness, and more long-lasting benefits to people and nature across time and place.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Conservação dos Recursos Naturais/métodos , Ecologia
7.
PLoS One ; 18(2): e0272366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730172

RESUMO

We present the results of a hybrid research design that borrows from both experimental techniques-experimental games-and observational techniques-surveys-to examine the relationships between basic human values and exposure to natural ecosystems, on the one hand, and collective action for resource governance, on the other. We initially hypothesize that more frequent exposure to forests, and more pro-environmental values will be associated with more conservation action. However, we find that other values-tradition and conformity-are more important than pro-environmental values or exposure to nature. Our results imply that resource governance is likely to be more successful where resource users hold values that facilitate cooperation, not necessarily strong pro-environmental values.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Conservação dos Recursos Naturais/métodos , Comportamento Social , Florestas
8.
Proc Biol Sci ; 290(1990): 20222203, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629117

RESUMO

Abandonment of agricultural lands promotes the global expansion of secondary forests, which are critical for preserving biodiversity and ecosystem functions and services. Such roles largely depend, however, on two essential successional attributes, trajectory and recovery rate, which are expected to depend on landscape-scale forest cover in nonlinear ways. Using a multi-scale approach and a large vegetation dataset (843 plots, 3511 tree species) from 22 secondary forest chronosequences distributed across the Neotropics, we show that successional trajectories of woody plant species richness, stem density and basal area are less predictable in landscapes (4 km radius) with intermediate (40-60%) forest cover than in landscapes with high (greater than 60%) forest cover. This supports theory suggesting that high spatial and environmental heterogeneity in intermediately deforested landscapes can increase the variation of key ecological factors for forest recovery (e.g. seed dispersal and seedling recruitment), increasing the uncertainty of successional trajectories. Regarding the recovery rate, only species richness is positively related to forest cover in relatively small (1 km radius) landscapes. These findings highlight the importance of using a spatially explicit landscape approach in restoration initiatives and suggest that these initiatives can be more effective in more forested landscapes, especially if implemented across spatial extents of 1-4 km radius.


Assuntos
Ecossistema , Florestas , Biodiversidade , Árvores , Plantas
9.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210069, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373917

RESUMO

Given the importance of species diversity as a tool for assessing recovery during forest regeneration and active restoration, robust approaches for assessing changes in tree species diversity over time are urgently needed. We assessed changes in tree species diversity during natural regeneration over 12-20 years in eight 1-ha monitoring plots in NE Costa Rica, six second-growth forests and two old-growth reference forests. We used diversity profiles to show successional trajectories in measures of observed, asymptotic and standardized tree diversity and evenness as well as sample completeness. We randomly subsampled 1-ha plot data to evaluate how well smaller spatial subsamples would have captured temporal trajectories. Annual surveys in eight 1-ha plots were missing substantial numbers of rare or infrequent species. Older second-growth sites showed consistent declines in tree diversity, whereas younger sites showed fluctuating patterns or increases. Subsample areas of 0.5 ha or greater were sufficient to infer the diversity of abundant species, but smaller subsamples failed to capture temporal trajectories of species richness and yielded positively biased estimates of evenness. In tropical forest regions with high levels of diversity, species diversity from small sample plots should be assessed using methods that incorporate abundance information and that standardize for sample coverage. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Ecossistema , Árvores , Florestas , Costa Rica , Clima Tropical , Biodiversidade
10.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210079, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373918

RESUMO

Community involvement is critical for the success of many interventions designed to promote reforestation. To secure this involvement, it helps to recognize that communities are heterogenous both within and among themselves and possess diverse mixes of livelihood assets required to implement reforestation. We explore the relationship between livelihood assets and reforestation success and outline a conceptual model that we call the community capacity curve (CCC) applied to reforestation. We argue that the shape of the CCC is sigmoidal. Importantly, communities at the lower end of the CCC have limited capacity to implement reforestation projects without substantial and ongoing capacity building and other sorts of support, including through livelihood projects that improve food security and provide cash benefits. Communities at the higher part of the CCC have greater capacity to implement reforestation projects, especially projects focused on biodiversity and environmental services. The CCC can help design, implement, monitor and assess reforestation projects, select appropriate livelihood activities and types of reforestation, select communities suited to a reforestation project, guide implementation and understand projects' successes and failure. The CCC also provides a framework to engage with policy makers and funding bodies to explore the types of support for communities to reforest successfully. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Florestas , Biodiversidade , Participação da Comunidade
11.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210065, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373922

RESUMO

There has never been a more pressing and opportune time for science and practice to collaborate towards restoration of the world's forests. Multiple uncertainties remain for achieving successful, long-term forest landscape restoration (FLR). In this article, we use expert knowledge and literature review to identify knowledge gaps that need closing to advance restoration practice, as an introduction to a landmark theme issue on FLR and the UN Decade on Ecosystem Restoration. Aligned with an Adaptive Management Cycle for FLR, we identify 15 essential science advances required to facilitate FLR success for nature and people. They highlight that the greatest science challenges lie in the conceptualization, planning and assessment stages of restoration, which require an evidence base for why, where and how to restore, at realistic scales. FLR and underlying sciences are complex, requiring spatially explicit approaches across disciplines and sectors, considering multiple objectives, drivers and trade-offs critical for decision-making and financing. The developing tropics are a priority region, where scientists must work with stakeholders across the Adaptive Management Cycle. Clearly communicated scientific evidence for action at the outset of restoration planning will enable donors, decision makers and implementers to develop informed objectives, realistic targets and processes for accountability. This article paves the way for 19 further articles in this theme issue, with author contributions from across the world. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Florestas
12.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210090, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373930

RESUMO

Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Ecossistema , Clima Tropical , Biodiversidade , Plantas , Ásia
16.
Conserv Biol ; 36(3): e13842, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34705299

RESUMO

Natural forest regrowth is a cost-effective, nature-based solution for biodiversity recovery, yet different socioenvironmental factors can lead to variable outcomes. A critical knowledge gap in forest restoration planning is how to predict where natural forest regrowth is likely to lead to high levels of biodiversity recovery, which is an indicator of conservation value and the potential provisioning of diverse ecosystem services. We sought to predict and map landscape-scale recovery of species richness and total abundance of vertebrates, invertebrates, and plants in tropical and subtropical second-growth forests to inform spatial restoration planning. First, we conducted a global meta-analysis to quantify the extent to which recovery of species richness and total abundance in second-growth forests deviated from biodiversity values in reference old-growth forests in the same landscape. Second, we employed a machine-learning algorithm and a comprehensive set of socioenvironmental factors to spatially predict landscape-scale deviation and map it. Models explained on average 34% of observed variance in recovery (range 9-51%). Landscape-scale biodiversity recovery in second-growth forests was spatially predicted based on socioenvironmental landscape factors (human demography, land use and cover, anthropogenic and natural disturbance, ecosystem productivity, and topography and soil chemistry); was significantly higher for species richness than for total abundance for vertebrates (median range-adjusted predicted deviation 0.09 vs. 0.34) and invertebrates (0.2 vs. 0.35) but not for plants (which showed a similar recovery for both metrics [0.24 vs. 0.25]); and was positively correlated for total abundance of plant and vertebrate species (Pearson r = 0.45, p = 0.001). Our approach can help identify tropical and subtropical forest landscapes with high potential for biodiversity recovery through natural forest regrowth.


Predicción de la Recuperación de la Biodiversidad a Escala de Paisaje según la Regeneración Natural del Bosque Tropical Resumen La regeneración natural del bosque es una solución rentable para la recuperación de la biodiversidad basada en la naturaleza, sin embargo, los diferentes factores socioambientales pueden derivar en resultados variables. Cómo predecir la ubicación en donde la regeneración natural del bosque recuperará los niveles de biodiversidad, los cuales son un indicador del valor de la conservación y un suministro potencial de diferentes servicios ambientales, es un vacío de conocimiento importante en la planeación de la restauración forestal. Buscamos predecir y mapear la recuperación a escala de paisaje de la riqueza de especies y la abundancia total de vertebrados, invertebrados y plantas en bosques tropicales y subtropicales de segundo crecimiento para guiar la planeación de la restauración. Primero, realizamos un metaanálisis mundial para cuantificar la medida a la que se desvió la recuperación de la riqueza y la abundancia total de especies en los bosques de segundo crecimiento de los valores de biodiversidad en los bosques antiguos referenciales en el mismo paisaje. Después, utilizamos un algoritmo de aprendizaje automático y un conjunto integral de factores socioambientales para predecir espacialmente la desviación a escala de paisaje para después mapearla. Los modelos explicaron en promedio el 34% de la varianza observada en la recuperación (rango de 9-51%). La recuperación de la biodiversidad a escala de paisaje en los bosques de segundo crecimiento pudo predecirse espacialmente con base en los factores socioambientales del paisaje (demografía humana, uso y cobertura del suelo, alteraciones naturales y antropogénicas, productividad del ecosistema, tipo de topografía y de suelo); fue significativamente más alta para la riqueza de especies que para la abundancia total de vertebrados (desviación media pronosticada ajustada al rango de 0.09 versus 0.34) e invertebrados (0.2 versus 0.35) pero no para las plantas (las cuales mostraron una recuperación similar para ambas medidas [0.24 versus 0.25]); y tuvo una correlación positiva para la abundancia de especies de plantas y vertebrados (Pearson r =0.45, p=0.001). Nuestra estrategia puede ayudar a identificar los paisajes de bosques tropicales y subtropicales con un potencial alto para la recuperación de la biodiversidad por medio de la regeneración natural del bosque.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Florestas , Humanos , Invertebrados , Plantas , Solo , Clima Tropical
17.
Science ; 374(6573): 1370-1376, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34882461

RESUMO

Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values. Recovery to 90% of old-growth values is fastest for soil (<1 decade) and plant functioning (<2.5 decades), intermediate for structure and species diversity (2.5 to 6 decades), and slowest for biomass and species composition (>12 decades). Network analysis shows three independent clusters of attribute recovery, related to structure, species diversity, and species composition. Secondary forests should be embraced as a low-cost, natural solution for ecosystem restoration, climate change mitigation, and biodiversity conservation.

18.
Biology (Basel) ; 10(11)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34827113

RESUMO

Successional dynamics of plants and animals during tropical forest regeneration have been thoroughly studied, while fungal compositional dynamics during tropical forest succession remain unknown, despite the crucial roles of fungi in ecological processes. We combined tree data and soil fungal DNA metabarcoding data to compare richness and community composition along secondary forest succession in Costa Rica and assessed the potential roles of abiotic factors influencing them. We found a strong coupling of tree and soil fungal community structure in wet tropical primary and regenerating secondary forests. Forest age, edaphic variables, and regional differences in climatic conditions all had significant effects on tree and fungal richness and community composition in all functional groups. Furthermore, we observed larger site-to-site compositional differences and greater influence of edaphic and climatic factors in secondary than in primary forests. The results suggest greater environmental heterogeneity and greater stochasticity in community assembly in the early stages of secondary forest succession and a certain convergence on a set of taxa with a competitive advantage in the more persisting environmental conditions in old-growth forests. Our work provides unprecedented insights into the successional dynamics of fungal communities during secondary tropical forest succession.

19.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845017

RESUMO

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.


Assuntos
Conservação dos Recursos Naturais , Florestas , Modelos Biológicos , Clima Tropical
20.
Curr Biol ; 31(19): R1326-R1341, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34637743

RESUMO

The UN Decade on Ecosystem Restoration offers immense potential to return hundreds of millions of hectares of degraded tropical landscapes to functioning ecosystems. Well-designed restoration can tackle multiple Sustainable Development Goals, driving synergistic benefits for biodiversity, ecosystem services, agricultural and timber production, and local livelihoods at large spatial scales. To deliver on this potential, restoration efforts must recognise and reduce trade-offs among objectives, and minimize competition with food production and conservation of native ecosystems. Restoration initiatives also need to confront core environmental challenges of climate change and inappropriate planting in savanna biomes, be robustly funded over the long term, and address issues of poor governance, inadequate land tenure, and socio-cultural disparities in benefits and costs. Tackling these issues using the landscape approach is vital to realising the potential for restoration to break the cycle of land degradation and poverty, and deliver on its core environmental and social promises.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Agricultura , Biodiversidade , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...