Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 259(Pt 1): 129006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176492

RESUMO

Conventional collagen-based hydrogels as wound dressing materials are usually lack of antibacterial activity and easily broken when encountering external forces. In this work, we developed a collagen peptide-based hydrogel as a wound dressing, which was composed of adipic acid dihydrazide functionalized collagen peptide (Col-ADH), oxidized dextran (ODex), polyvinyl alcohol (PVA) and borax via multiple-dynamic reversible bonds (acylhydrazone, amine, borate ester and hydrogen bonds). The injectable hydrogel exhibited satisfactory self-healing ability, antibacterial activity, mechanical strength, as well as good biocompatibility and biodegradability. In vivo experiments demonstrated the rapid hemostasis, accelerated cell migration, and promoted wound healing capacities of the hydrogel. These results indicate that the multifunctional collagen peptide-based hydrogel has great potentials in the field of wound dressings.


Assuntos
Hidrogéis , Prunella , Hidrogéis/farmacologia , Colágeno , Cicatrização , Antibacterianos/farmacologia , Peptídeos/farmacologia
2.
J Mater Chem B ; 11(19): 4308-4317, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37144625

RESUMO

The development of drug delivery systems with high drug loading capacity, low leakage at physiological pH, and rapid release at the lesion sites remains an ongoing challenge. In this work, core-shell poly(6-O-methacryloyl-D-galactose)@poly(tert-butyl methacrylate) (PMADGal@PtBMA) nanoparticles (NPs) of sub-50 nm are facilely synthesized by reversible addition-fragmentation chain transfer (RAFT) soap-free emulsion polymerization with the assistance of 12-crown-4. A hydrophilic poly(methacrylic acid) (PMAA) core can then be revealed after deprotection of the tert-butyl groups, which is negatively charged and can adsorb nearly 100% of incubated doxorubicin (DOX) from a solution at pH 7.4. The physical shrinkage of PMAA chains below pH 6.0 endows the core with the squeezing effect, therefore realizing rapid drug release. It is demonstrated that the DOX release rate of PMADGal@PMAA NPs at pH 5 was 4 times that at pH 7.4. Cellular uptake experiments confirm the high targeting ability of the galactose modified PMADGal shell to human hepatocellular carcinoma (HepG2) cells. The fluorescence intensity of DOX in HepG2 cells is 4.86 times that of HeLa cells after 3 h incubation. Moreover, 20% cross-linked NPs show the highest uptake efficiency by HepG2 cells due to their moderate surface charge, size and hardness. In summary, both the core and the shell of PMADGal@PMAA NPs promise the rapid site-specific release of DOX in HepG2 cells. This work provides a facile and an effective strategy to synthesize core-shell NPs for hepatocellular carcinoma targeting therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Células HeLa , Polímeros , Neoplasias Hepáticas/tratamento farmacológico , Doxorrubicina/farmacologia , Concentração de Íons de Hidrogênio
3.
ACS Macro Lett ; 12(2): 201-207, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36695919

RESUMO

Galactosylated core-shell nanoparticles (NPs) with diameters of sub-50 nm were fabricated in one pot by reversible addition-fragmentation chain transfer (RAFT) soap-free emulsion polymerization. Their galactosylated shells and acidic cores endow them with high targeting and drug loading efficiencies, respectively. Morever, the physical shrinkage and cleavage of the disulfide cross-linked NPs can realize the rapid release of loaded doxorubicin (DOX) under pH 5.0 and reduced glutathione (GSH) conditions. The combination of these excellent properties resulted in an even lower IC50 of DOX-loaded NPs than free DOX, demonstrating that this platform would be promising in targeting the therapy of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Doxorrubicina/uso terapêutico , Nanopartículas/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA